Use this URL to cite or link to this record in EThOS:
Title: Speckle pattern interferometry : vibration measurement based on a novel CMOS camera
Author: Santonocito, Daniele
Awarding Body: Heriot-Watt University
Current Institution: Heriot-Watt University
Date of Award: 2013
Availability of Full Text:
Access from EThOS:
Access from Institution:
A digital speckle pattern interferometer based on a novel custom complementary metaloxide-semiconductor (CMOS) array detector is described. The temporal evolution of the dynamic deformation of a test object is measured using inter-frame phase stepping. The flexibility of the CMOS detector is used to identify regions of interest with full-field time averaged measurements and then to interrogate those regions with time-resolved measurements sampled at up to 7 kHz. The maximum surface velocity that can be measured and the number of measurement points are limited by the frame rate and the data transfer rate of the detector. The custom sensor used in this work is a modulated light camera (MLC), whose pixel design is still based on the standard four transistor active pixel sensor (APS), but each pixel has four large independently shuttered capacitors that drastically boost the well capacity from that of the diode alone. Each capacitor represents a channel which has its own shutter switch and can either be operated independently or in tandem with others. The particular APS of this camera enables a novel approach in how the data are acquired and then processed. In this Thesis we demonstrate how, at a given frame rate and at a given number of measurement points, the data transfer rate of our system is increased if compared to the data transfer rate of a system using a standard approach. Moreover, under some assumptions, the gain in system bandwidth doesn’t entail any reduction in the maximum surface velocity that can be reliably measured with inter-frame phase stepping.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available