Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.685772
Title: Cathelicidin and its role in defence against bacterial infections of epithelial cells
Author: Beaumont, Paula Elizabeth
ISNI:       0000 0004 5916 3381
Awarding Body: University of Edinburgh
Current Institution: University of Edinburgh
Date of Award: 2015
Availability of Full Text:
Access through EThOS:
Full text unavailable from EThOS. Please try the link below.
Access through Institution:
Abstract:
Cathelicidins are antimicrobial peptides (AMPs) that were first discovered to have microbicidal properties but more recently to be multifunctional immunomodulators and thus important in influencing host defence against infectious disease. Whilst roles in various organs have been demonstrated, their expression patterns in health and disease in other organs are less clear and their key immunomodulatory functions remain undefined, particularly with regard to the balance of immunomodulatory properties and microbicidal activity in their ability to promote defence against infection. I therefore set out to describe LL-37 expression (human cathelicidin) in the female reproductive tract (across the menstrual cycle) and in the lung (during specific lung diseases), to define the effects on the function of airway epithelial cells during bacterial infection and to evaluate the key in vivo roles of endogenous cathelicidin (using a knockout mouse model) as well as the effect of therapeutic administration of LL-37 in a pulmonary Pseudomonas aeruginosa infection model. I demonstrated that cathelicidin protein and transcription shows a cyclical pattern of expression in female reproductive tissues which is maintained at high levels in decidua. LL- 37 protein was also detected in hTERT endometrial epithelial cells but despite the suggestion that cathelicidin may be regulated by steroid hormones there was no direct effect of progesterone on transcription. LL-37 is barely detected in healthy airways however is well known to increase during infection or inflammation. I observed that sputum from patients with bronchiectasis showed a correlation between the level of LL-37, TNF, MPO and chronic colonisation of Pseudomonas aeruginosa. Patients with lung cancer expressed much less LL- 37 than the bronchiectasis patients but there was a trend towards increased production postsurgery compared to pre-surgery. LL-37 was previously shown by our lab to selectively promote BAX and caspase-dependant death of infected epithelial cells. I went on to show that this appears to be a partially caspase- 1 dependent mechanism and that human bronchial epithelial (HBE) cells and A549 cell lines both express several of the components required to form inflammasomes, a caspase-1 dependant form of inflammatory cell death. Finally, I showed using murine models that cathelicidin enhances bacterial clearance during pulmonary infection in vivo, a response which is defective in mice lacking endogenous cathelicidin and that administration of exogenous, synthetic LL-37 at the time of infection can promote an early protective neutrophil influx in the absence of endogenous cathelicidin production.
Supervisor: Davidson, Donald ; Govan, John Sponsor: Medical Research Council (MRC)
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.685772  DOI: Not available
Keywords: cathelicidins ; antimicrobial peptides ; Pseudomonas
Share: