Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.685125
Title: The dynamics of biological Russian dolls : investigating the causes and consequences of variation in symbiont density in citrus mealybugs
Author: Parkinson, Jasmine Frances
ISNI:       0000 0004 5924 0391
Awarding Body: University of Sussex
Current Institution: University of Sussex
Date of Award: 2016
Availability of Full Text:
Access through EThOS:
Full text unavailable from EThOS. Please try the link below.
Access through Institution:
Abstract:
Endosymbiosis has been a major driver of evolutionary diversification of eukaryotes. However, symbiosis can create conflict between partners and symbiont density is often tightly regulated within hosts to ensure optimal functioning of the holobiont. The horticultural pest insects, citrus mealybugs, make an intriguing and potentially-powerful case study for endosymbiosis, harbouring two obligate, nutritional, vertically transmitted bacteria: Tremblaya princeps and Moranella endobia, in a nested mutualism. In this thesis, I examine the variation in the density of each of these obligate symbionts in citrus mealybugs under controlled environmental conditions, using qPCR, as well as the diversity of facultative symbionts that infect the mealybugs using next-generation sequencing and conventional targeted PCR. Citrus mealybugs were found to harbour Wolbachia, Spiroplasma, Cardinium and Rickettsia, which have been found to impact the fitness of their hosts in other insect species, whereas long-tailed mealybugs were not found to harbour any of these bacteria, but the symbiont communities in both species were found to be dominated by their obligate symbionts. The density of the two obligate symbionts varied by up to six-fold between different populations kept under identical environmental conditions and a hybridisation experiment indicated that M. endobia and T. princeps density may be controlled by symbiont and host genotype respectively. However, symbiont density was not found to correlate with life-history traits in the laboratory, the ability of mealybugs to exploit different plant species, or the susceptibility of the mealybugs to insecticide and artificial reduction of symbiont density by heat-stress also had no effect on host fitness. Citrus mealybugs harbour seemingly superfluous symbionts with no clear fitness costs or benefits.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.685125  DOI: Not available
Keywords: QH0548 Symbiosis ; QL0463 Insects
Share: