Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.684835
Title: Dental pulp stem cells : investigations into methods of enhancing regeneration and repair of the cornea
Author: Kushnerev, Evgeny
ISNI:       0000 0004 5922 9766
Awarding Body: University of Manchester
Current Institution: University of Manchester
Date of Award: 2016
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
The cornea is the transparent, avascular and highly innervated outer anterior layer of the eye. The cornea is a very delicate structure and any traumatic insult may lead to damage and limbal stem cell deficiency (LSCD), leading to chronic discomfort, visual impairment and ultimately blindness. The resultant issues can have a significant effect on patients and reduce their quality of life. Whilst conservative and therapeutic management of these problems play a part in the treatment of corneal injuries often surgery is indicated. However, surgical repair of damaged corneas may be limited by the availability of suitable donor tissue and donor site morbidity. Corneal grafts or penetrating keratoplasty (PK) or donor limbal grafts may lead to surgical complications such as corneal scarring, infection and graft rejection. First described in 1908 by A. Maximow, stem cells offer the opportunity to produce functional cell specific tissues from undifferentiated “primordial” cells. By using stem cells from human adult or deciduous tooth pulp, repair and regeneration of the cornea may be possible. Furthermore, it may lead to development of new and innovative treatments of other corneal disorders and injuries. The aim of the investigations detailed in this thesis was to characterize dental pulp stem cells (DPSC), help establish their use in regenerative medicine and help enhance the repair and regeneration of damaged corneal epithelium. Using various laboratory techniques including PCR, western blot and immunostaining it was determined that DPSC possess adequate potency and plasticity to be differentiated into a number of cell-lines. Co-culture of DPSC with human cornea demonstrated that stem cells were attracted to the tissue and migrate towards it and attach to the surface of the limbal explant. Additionally, using soft contact lenses it has been shown that DPSC can be successfully transferred from culture to human cornea in vitro. Expression of terminally differentiated corneal epithelium markers such as cytokeratin 3 & 12 further supports the concept that DPSC were transdifferentiated into epithelial progenitor cells. Once transferred onto the corneal surface, DPSC supported corneal epithelium regeneration, allowed corneal epithelial like cells to grow and avert conjunctivalisation and thus maintained cornea transparency. Further studies are needed to provide a better understanding of the DPSC’s role in corneal regeneration, but it is clear that DPSC are promising candidates for this novel and non-invasive method of corneal epithelium regeneration.
Supervisor: Hillarby, Mary ; Shawcross, Susan ; Yates, Julian Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.684835  DOI: Not available
Keywords: Dental pulp stem cells ; Cornea ; Regeneration ; Contact lenses
Share: