Use this URL to cite or link to this record in EThOS:
Title: Stellar and planetary remnants in large area surveys
Author: Fusillo, Nicola P. G.
ISNI:       0000 0004 5915 2893
Awarding Body: University of Warwick
Current Institution: University of Warwick
Date of Award: 2015
Availability of Full Text:
Access from EThOS:
Access from Institution:
The advent of large-area digital sky surveys marked a turning point for the entire field of astronomy. Today, with multi-band photometry for hundreds of millions of objects readily at hand, the ability to mine data for specific rare objects of interest has become of fundamental importance. The aim of this work was to study white dwarfs and planetary remnants by, first of all, developing efficient selection algorithms to identify these objects in large area surveys. Using SDSS DR7 we developed a routine which relies on colours and proper motion to calculate probabilities of being a white dwarf (PWD) which, in turn, enables a flexible selection of white dwarf candidates without recourse to spectroscopy. The application of this selection method to SDSS DR10 lead to the creation of a catalogue of ≃ 66, 000 bright (g ≤ 19) objects with calculated PWD from which it is possible to select ≃ 23, 000 high-confidence white dwarf candidates . The reliability of the method was further tested using a sample of spectroscopic objects from the LAMOST survey. This independent test confirmed the robustness of our algorithm and lead to the identification of 290 new white dwarfs. We also applied our selection routine to the recently released ATLAS DR2 to construct a preliminary catalogue of ≃ 9000 ATLAS white dwarf candidates. This catalogue represents the first sample of white dwarfs candidates in the southern hemisphere. We later exploited our catalogue in several science project. We developed a separate selection algorithm to identify variable white dwarfs in large area time-domain surveys. To test this method we carried out a pilot search for pulsating white dwarfs using 400 high-confidence white dwarfs candidates with available multi-epoch photometry in SDSS Stripe 82. This test proved the ability of our method to select different types of variable white dwarfs and allowed to identify 5 pulsating white dwarfs, 3 of which are new discoveries. During the development of our catalogue, we also identified 64 new metal polluted white dwarfs. Recent studies have shown that the metal pollution in these objects is the result of accretion of remnants of planetary systems. In a few cases these planetary remnants form a circustellar debris disc which can be detected as an infrared excess. Here we present the results of high-resolution spectroscopic follow-up of 15 of the newly identified metalpolluted white dwarfs. Using accurate spectral analyses of the atmospheres of these white dwarfs we determined chemical compositions and masses of the accreted bodies, and discuss the impact of these finding on the current knowledge of extra-solar planetary systems. Using optical and infrared photometric data from various large-area surveys we carried out a search for infrared excess around our newly identified metal polluted white dwarfs, and high-confidence white dwarf candidates. We identified four metal polluted white dwarfs with possible debris discs and compiled a list of ≃ 300 white dwarfs candidates with infrared excess ready for future spectroscopic follow-up.
Supervisor: Not available Sponsor: Science and Technology Facilities Council ; European Research Council
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: QB Astronomy