Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.682516
Title: Enhanced cold-side cooling techniques for lean burn combustor liners
Author: Peacock, Graham
Awarding Body: Loughborough University
Current Institution: Loughborough University
Date of Award: 2013
Availability of Full Text:
Access through EThOS:
Access through Institution:
Abstract:
In order to meet the increasingly strict emissions targets required in modern civil aviation, lean burn combustors are being pursued as a means to reduce the environmental impact of gas-turbine engines. By adopting a lean air/fuel mixture NOx production may be reduced. The increase in proportional amount of high pressure air entering directly into the combustor reduces the amount available for cooling of the combustor liner tiles. A reduced mass of air places restrictions on the porosity of cooling arrays, requiring a departure from applications of pedestal and slotted film cooling typically used to cool double skin combustor liners. An alternative approach applied to lean burn combustors places impingement and effusion arrays on the cold and hot skins respectively for cooling of both sides of the hot liner skin. Although impingement cooling is well established as a means of promoting forced convection cooling, there are many areas on a liner tile where cooling behaviour is not well characterised. Additionally, film cooling reduces combustive efficiency and increases the production of NOx and CO, prompting interest in reducing its use in combustor cooling. The research for this thesis has focussed on investigations into current and proposed geometries to identify methods to enhance cold side cooling in lean burn applications. A fully modelled combustor liner tile has been used for investigation into the impact of structural and pressure blockages on cold side cooling performance of an impingementeffusion array using a transient liquid crystal technique to measure heat transfer performance. Research has found structural blockages can reduce heat transfer performance to ~60% of typical values, with crossflow development due to pressure blockage producing similar reductions in Nusselt values to ~70% of typical. A second investigation explored enhanced cooling geometries combining a distributed impingement feed over roughened channels of pedestals at variable height (H/D) and pitch (P/D). A newly proposed 'Shielded Impingement' concept combines full height pedestals, to protect impingement jets from developing crossflow, with quarter height pedestals for turbulence enhancement of crossflow cooling. The research has found that Shielded Impingement geometries displayed the strongest cooling performance of all tested designs due primarily to increased downstream Nusselt numbers. Pressure losses were comparable to short pedestal geometries, with little apparent effect of full height pedestals. Low pressure losses mean that application to extended channels in line with the full tile geometry is possible.
Supervisor: Not available Sponsor: Rolls-Royce
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.682516  DOI: Not available
Keywords: Cooling ; Heat transfer ; Impingement ; Pedestal ; Liquid crystal ; Combustor liner
Share: