Use this URL to cite or link to this record in EThOS:
Title: Biomimetic substrates for immune cell activation
Author: Delcassian, Derfogail
Awarding Body: Imperial College London
Current Institution: Imperial College London
Date of Award: 2013
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
This thesis describes the fabrication of biomimetic substrates, and their use as tools to probe cellular interactions of key immune cells. Nanoparticles of gold and zinc sulfide have been fabricated, and patterned into nanoarrays. Adaptive (T cell) and innate (NK cell) immune cell responses to nanoscale spacing of ligand-receptor pairs were measured, and the effect of presenting stimulatory ligands on substrates with varying mechanical properties has been tested for T cell responses. The advanced materials in this thesis act to create artificial immune synapses, and probe the effect of these stimuli on engagement and activation of human immune cells. Specifically, block co-polymers were used to form polymer micelles which encapsulate metal ions and form metal or metal compound nanoparticles. Micelles encapsulating metal ions or nanoparticles were formed and deposited onto substrates using Block Co-polymer Micellar Lithography (BCML) to form nanoparticle arrays with controlled inter-particle spacing. Well controlled gold nanoparticle arrays with spacing between 25-150nm have been produced. The technique has been further developed to include fabrication of zinc sulfide particles and nanoarrays. Zinc sulfide nanoparticles showed a unique internal structure with 5nm crystalline domains set in an amorphous matrix and an optical band gap of between 3.88-4.28eV. Nanoparticle arrays were then functionalised with biological ligands, notably antibodies that engage with the NK cell surface receptor CD16, or the T cell TCR/CD3 moiety. The cellular response to these materials was measured, and was sensitive to the nanoscale arrangement of stimulatory ligands; both cell types responded to ligands with 25nm, but not 104nm, inter-ligand spacing. In an alternative approach, spherical PEG hydrogel particles of diameter 5-50μm were formed with controlled rigidity between 3-2000kPa. T cell response as a function of substrate rigidity was tested, and cells showed maximal response to anti-CD3 functionalised substrates with rigidities of 3-5kPa.
Supervisor: Dunlop, Iain E. ; Stevens, Molly M. Sponsor: Engineering and Physical Sciences Research Council ; National Institute for Health Research
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available