Use this URL to cite or link to this record in EThOS:
Title: Behavioural strategy for indoor mobile robot navigation in dynamic environments
Author: Alsaab, Ahmad
ISNI:       0000 0004 5915 2033
Awarding Body: Newcastle University
Current Institution: University of Newcastle upon Tyne
Date of Award: 2015
Availability of Full Text:
Access from EThOS:
Access from Institution:
Development of behavioural strategies for indoor mobile navigation has become a challenging and practical issue in a cluttered indoor environment, such as a hospital or factory, where there are many static and moving objects, including humans and other robots, all of which trying to complete their own specific tasks; some objects may be moving in a similar direction to the robot, whereas others may be moving in the opposite direction. The key requirement for any mobile robot is to avoid colliding with any object which may prevent it from reaching its goal, or as a consequence bring harm to any individual within its workspace. This challenge is further complicated by unobserved objects suddenly appearing in the robots path, particularly when the robot crosses a corridor or an open doorway. Therefore the mobile robot must be able to anticipate such scenarios and manoeuvre quickly to avoid collisions. In this project, a hybrid control architecture has been designed to navigate within dynamic environments. The control system includes three levels namely: deliberative, intermediate and reactive, which work together to achieve short, fast and safe navigation. The deliberative level creates a short and safe path from the current position of the mobile robot to its goal using the wavefront algorithm, estimates the current location of the mobile robot, and extracts the region from which unobserved objects may appear. The intermediate level links the deliberative level and the reactive level, that includes several behaviours for implementing the global path in such a way to avoid any collision. In avoiding dynamic obstacles, the controller has to identify and extract obstacles from the sensor data, estimate their speeds, and then regular its speed and direction to minimize the collision risk and maximize the speed to the goal. The velocity obstacle approach (VO) is considered an easy and simple method for avoiding dynamic obstacles, whilst the collision cone principle is used to detect the collision situation between two circular-shaped objects. However the VO approach has two challenges when applied in indoor environments. The first challenge is extraction of collision cones of non-circular objects from sensor data, in which applying fitting circle methods generally produces large and inaccurate collision cones especially for line-shaped obstacle such as walls. The second challenge is that the mobile robot cannot sometimes move to its goal because all its velocities to the goal are located within collision cones. In this project, a method has been demonstrated to extract the colliii sion cones of circular and non-circular objects using a laser sensor, where the obstacle size and the collision time are considered to weigh the robot velocities. In addition the principle of the virtual obstacle was proposed to minimize the collision risk with unobserved moving obstacles. The simulation and experiments using the proposed control system on a Pioneer mobile robot showed that the mobile robot can successfully avoid static and dynamic obstacles. Furthermore the mobile robot was able to reach its target within an indoor environment without causing any collision or missing the target.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available