Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.680048
Title: The effect of folate deficiency on placental function
Author: Baker, Bernadette
ISNI:       0000 0004 5372 6083
Awarding Body: University of Manchester
Current Institution: University of Manchester
Date of Award: 2016
Availability of Full Text:
Access through EThOS:
Access through Institution:
Abstract:
Insufficient maternal folate during pregnancy increases the risk of the baby being small for gestational age (SGA). Studies in teenagers, a population vulnerable to folate deficiency and SGA birth, have shown that low maternal folate status is associated with impaired placental cell turnover and reduced transport suggesting placental dysfunction underlies SGA in maternal folate deficiency. Mechanisms through which folate-depletion compromises placental function are currently unknown. In non-placental cells, folate modulates microRNAs (miRs), post-transcriptional regulators of cellular functions. Expression of miRs is altered in placentas of SGA compared to normally grown babies but there are no data on differential miR expression or regulation in placentas from folate deficient women. This PhD investigated the hypothesis that placental dysfunction observed in folate deficient women is mediated by altered miR expression. Three placental preparations were compared (villous tissue in explant culture, BeWo choriocarcinoma cells and isolated cytotrophoblast cells) to determine the optimum in vitro system to study the direct effects of folate deficiency. In cytotrophoblast cells, folate deficiency significantly elevated apoptosis and reduced the activity of the system A amino acid transporter, consistent with observations in the placentas of folate-deficient teenagers. The reduction in system A activity by low folate was not associated with altered mRNA expression for the isoforms of system A, implicating an effect of low folate on post-translational regulation of the nutrient transporter. Targeted examination of villous tissue from teenagers with low folate status identified up-regulation of miR-222-3p a folate-sensitive miR. An unbiased miR array identified up-regulation of a further 16 miRs suggesting that maternal folate deficiency in vivo results in aberrant placental miR expression. Bioinformatic analysis of the folate sensitive miRs predicted gene targets known to be altered in placentas from SGA pregnancy that were likely to alter placental function. Two miRs altered in placentas from women with low folate status, miR-30e-3p and miR-34b-5p, were also significantly altered in folate deficient cytotrophoblasts confirming a direct effect of folate on trophoblast miR expression. Inhibition of these miRs in vitro had no effects on placental functions that are altered in vivo in folate-deficient women. Gene array and in silico analysis identified functional endpoints affected by these folate sensitive miRs, including cell signalling for proliferation and survival and oxidative stress, which might contribute to placental dysfunction in folate deplete women. Overall, this study has demonstrated for the first time that folate deficient conditions can directly alter trophoblast system A transport and cell survival and thus could contribute to the increased susceptibility to SGA births in folate deficient women. It has also contributed to the knowledge that miR expression is differentially altered in placentas exposed to folate-deficient versus sufficient conditions in vivo and that miRs are directly altered by folate depletion in vitro. These studies provide the foundation for future research to define the functional consequences of altered expression of folate-sensitive miRs and their target genes to explain how altered miRs could be affecting placental function resulting in development of SGA.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.680048  DOI: Not available
Keywords: placental function ; folate ; microrna ; fetal growth
Share: