Use this URL to cite or link to this record in EThOS:
Title: Optimising supermarket promotions of fast moving consumer goods using disaggregated sales data : a case study of Tesco and their small and medium sized suppliers
Author: Malik, Sheraz Alam
Awarding Body: University of Kent
Current Institution: University of Kent
Date of Award: 2015
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
The use of price promotions for fast moving consumer goods (FMCG’s) by supermarkets has increased substantially over the last decade, with significant implications for all stakeholders (suppliers, service providers & retailers) in terms of profitability and waste. The overall impact of price promotions depends on the complex interplay of demand and supply side factors, which has received limited attention in the academic literature. There is anecdotal evidence that in many cases, and particularly for products supplied by small and medium sized enterprises (SMEs), price promotions are implemented with limited understanding of these factors, resulting in missed opportunities for sales and the generation of avoidable promotional waste. This is particularly dangerous for SMEs who are often operating with tight margins and limited resources. A better understanding of consumer demand, through the use of disaggregated sales data (by shopper segment and store type) can facilitate more accurate forecasting of promotional uplifts and more effective allocation of stock, to maximise promotional sales and minimise promotional waste. However, there is little evidence that disaggregated data is widely or routinely used by supermarkets or their suppliers, particularly for those products supplied by SMEs. Moreover, the bulk of the published research regarding the impact of price promotions is either focussed on modelling consumer response, using claimed behaviour or highly aggregated scanner data or replenishment processes (frameworks and models) that bear little resemblance to the way in which the majority of food SMEs operate. This thesis explores the scope for improving the planning and execution of supermarket promotions, in the specific context of products supplied by SME, through the use of dis-aggregated sales data to forecast promotional sales and allocate promotional stock. An innovative case study methodology is used combining qualitative research to explore the promotional processes used by SMEs supplying the UK’s largest supermarket, Tesco, and simulation modelling, using supermarket loyalty card data and store level sales data, to estimate short term promotional impacts under different scenarios and derive optimize stock allocations using mixed integer linear programming (MILP). ii The results suggest that promotions are often designed, planned and executed with little formalised analysis or use of dis-aggregated sales data and with limited consideration of the interplay between supply and demand. The simulation modelling and MILP demonstrate the benefits of using supermarket loyalty card data and store level sales data to forecast demand and allocate stocks, through higher promotional uplifts and reduced levels of promotional waste.
Supervisor: Fearne, Andrew ; O'Hanley, Jesse ; Wu, Shaomin Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: HF Commerce ; HF5351 Business