Use this URL to cite or link to this record in EThOS:
Title: The impact of innovative effluent permitting policy on urban wastewater system performance
Author: Meng, Fanlin
ISNI:       0000 0004 5371 7195
Awarding Body: University of Exeter
Current Institution: University of Exeter
Date of Award: 2015
Availability of Full Text:
Access from EThOS:
Access from Institution:
This thesis investigates innovative effluent point-source permitting approaches from an integrated urban wastewater system (UWWS) perspective, and demonstrates that three proposed permitting approaches based on optimal operational or control strategies of the wastewater system are effective in delivering multiple and balanced environmental benefits (water quality, GHG emissions) in a cost-efficient manner. Traditional permitting policy and current flexible permitting practices are first reviewed, and opportunities for permitting from an integrated UWWS perspective are identified. An operational strategy-based permitting approach is first developed by a four-step permitting framework. Based on integrated UWWS modelling, operational strategies are optimised with objectives including minimisation of operational cost, variability of treatment efficiency and environmental risk, subject to compliance of environmental water quality standards. As trade-offs exist between the three objectives, the optimal solutions are screened according to the decision-makers’ preference and permits are derived based on the selected solutions. The advantages of this permitting approach over the traditional regulatory method are: a) cost-effectiveness is considered in decision-making, and b) permitting based on operational strategies is more reliable in delivering desirable environmental outcomes. In the studied case, the selected operational strategies achieve over 78% lower environmental risk with at least 7% lower operational cost than the baseline scenario; in comparison, the traditional end-of-pipe limits can lead to expensive solutions with no better environmental water quality. The developed permitting framework facilitates the derivation of sustainable solutions as: a) stakeholders are involved at all points of the decision-making process, so that various impacts of the operation of the UWWS can be considered, and b) multi-objective optimisation algorithm and visual analytics tool are employed to efficiently optimise and select high performance operational solutions. The second proposed permitting approach is based on optimal integrated real time control (RTC) strategies. Permits are developed by a three-step decision-making analysis framework similar to the first approach. An off-line model-based predictive aeration control strategy is investigated for the case study, and further benefits (9% lower environmental risk and 0.6% less cost) are achieved by an optimal RTC strategy exploiting the dynamic assimilation capacity of the environment. A similar permitting approach, but simpler than the first two methods, is developed to derive operational/control strategy-based permits by an integrated cost-risk analysis framework. Less comprehensive modelling and optimisation skills are needed as it couples a dynamic wastewater system model and a stochastic permitting model and uses sensitivity analysis and scenario analysis to optimise operational/control strategies, hence this approach can be a good option to develop risk-based cost-effective permits without intensive resources. Finally, roadmaps for the implementation of the three innovative permitting approaches are discussed. Current performance-based regulations and self-monitoring schemes are used as examples to visualise the new way of permitting. The viability of the proposed methods as alternative regulation approaches are evaluated against the core competencies of modern policy-making.
Supervisor: Butler, David ; Fu, Guangtao Sponsor: SANITAS project (EU FP7 Marie Curie Initial Training Network)
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: flexible permitting ; integrated urban wastewater system ; modelling ; multi-objective optimisation ; real-time control