Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.679523
Title: The respiratory and gut physiology of fish : responses to environmental change
Author: Rogers, Nicholas John
ISNI:       0000 0004 5371 703X
Awarding Body: University of Exeter
Current Institution: University of Exeter
Date of Award: 2015
Availability of Full Text:
Access through EThOS:
Access through Institution:
Abstract:
Many of the habitats occupied by fish are highly dynamic, naturally demonstrating substantial abiotic fluctuations over diurnal, tidal or seasonal cycles. It is also the case that throughout their 545 million year evolutionary history, fish have existed in aquatic environments very different to those of the present day. However, the past several decades have seen unprecedented rates of environmental change, at local and global scales, arising from human activities. The two major themes of the present thesis are: 1) Respiratory responses of fish to changes in environmental oxygen and temperature in the context of exploring intra- and inter-specific trait variation and its ecological implications 2) The effects of environmental factors (oxygen, carbon dioxide, temperature and seawater chemistry) on the intestinal precipitation and excretion of calcium carbonate by marine teleosts. In the first study (chapter two) a comprehensive database of fish critical PO2 (Pcrit) data compiled from the published literature is presented. The systematic review of this literature provided the opportunity to critically examine methodologies for determining Pcrit as well as its usefulness as an indicator of hypoxia tolerance in fish. The second study (chapter three) examines whether inter- and intra-specific variation in thermal and hypoxia tolerance in two reef snapper species (Lutjanus carponotatus and Lutjanus adetii) reflects their distributions across the contrasting biophysical environments of the reef flat and reef slope surrounding Heron Island on the Great Barrier Reef. L. carponotatus was clearly the most thermally and hypoxia tolerant of the two species, demonstrating a ~3.5 °C wider thermal tolerance zone (higher CTmax, lower CTmin) and ~26% lower Pcrit than L. adetii. These results suggest that the contrasting distribution of these species between flat and slope reef zones is reflected in their physiological tolerances. However, there was no evidence of intra-species variation in tolerance between flat and slope caught L. carponotatus individuals, indicating that this species does not form physiologically distinct subpopulations between these reef zones. The third study (chapter four) experimentally quantified the effect of hypercarbia (3000 μatm) and hypoxia (50% air saturation) on gut carbonate production by the European flounder (Platichthys flesus). Both hypercarbia and hypoxia resulted in a significant increase in carbonate excretion rate (1.5-fold and 2.4-fold, respectively) and acted synergistically when combined. In the final study (chapter five), gut carbonate production was measured in the European flounder undergoing conditions simulating the ‘calcite seas’ of the Cretaceous. The results of this study support the hypothesis that ocean conditions prevalent during the Cretaceous period resulted in piscine carbonate production rates substantially higher (~14-fold) than the present day. Ultimately, this thesis directly links the environmental physiology of fish at the individual level to wider scale implications (past, present and future), ranging from local ecological patterns all the way up to global carbon cycles.
Supervisor: Wilson, Rod Sponsor: Natural Environment Research Council (NERC)
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.679523  DOI: Not available
Keywords: Fish ; Hypoxia ; Hypercarbia ; Physiology ; Metabolic Rate ; Osmoregulation ; Cretaceous ; Heron Island ; Thermal Tolerance ; Inorganic Carbon Cycle ; Environmental Change ; Ecophysiology ; Carbonate ; Calcium ; European Flounder ; Tolerance
Share: