Use this URL to cite or link to this record in EThOS:
Title: Attribution : a computational approach
Author: Pareti, Silvia
ISNI:       0000 0004 5371 6037
Awarding Body: University of Edinburgh
Current Institution: University of Edinburgh
Date of Award: 2015
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Our society is overwhelmed with an ever growing amount of information. Effective management of this information requires novel ways to filter and select the most relevant pieces of information. Some of this information can be associated with the source or sources expressing it. Sources and their relation to what they express affect information and whether we perceive it as relevant, biased or truthful. In news texts in particular, it is common practice to report third-party statements and opinions. Recognizing relations of attribution is therefore a necessary step toward detecting statements and opinions of specific sources and selecting and evaluating information on the basis of its source. The automatic identification of Attribution Relations has applications in numerous research areas. Quotation and opinion extraction, discourse and factuality have all partly addressed the annotation and identification of Attribution Relations. However, disjoint efforts have provided a partial and partly inaccurate picture of attribution. Moreover, these research efforts have generated small or incomplete resources, thus limiting the applicability of machine learning approaches. Existing approaches to extract Attribution Relations have focused on rule-based models, which are limited both in coverage and precision. This thesis presents a computational approach to attribution that recasts attribution extraction as the identification of the attributed text, its source and the lexical cue linking them in a relation. Drawing on preliminary data-driven investigation, I present a comprehensive lexicalised approach to attribution and further refine and test a previously defined annotation scheme. The scheme has been used to create a corpus annotated with Attribution Relations, with the goal of contributing a large and complete resource than can lay the foundations for future attribution studies. Based on this resource, I developed a system for the automatic extraction of attribution relations that surpasses traditional syntactic pattern-based approaches. The system is a pipeline of classification and sequence labelling models that identify and link each of the components of an attribution relation. The results show concrete opportunities for attribution-based applications.
Supervisor: Webber, Bonnie ; Shimodaira, Hiroshi ; Van Deemter, Kees Sponsor: Engineering and Physical Sciences Research Council (EPSRC)
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: attribution ; quotation ; opinion ; relation extraction ; discourse