Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.679256
Title: Outlier effects on robust joint modelling of longitudinal and survival date
Author: McCrink, L. M.
ISNI:       0000 0004 5371 5309
Awarding Body: Queen's University Belfast
Current Institution: Queen's University Belfast
Date of Award: 2014
Availability of Full Text:
Full text unavailable from EThOS. Please contact the current institution’s library for further details.
Abstract:
Robust joint modelling is an emerging field of research. Through the advancements in electronic patient healthcare records, the popularly of joint modelling approaches has grown rapidly in recent years providing simultaneous analysis of longitudinal and survival data. This research advances previous work through the development of a novel robust joint modelling methodology for one of the most common types of standard joint models, that which links a linear mixed model with a Cox proportional hazards model. Through t-distributional assumptions, longitudinal outliers are accommodated with their detrimental impact being down weighed and thus providing more efficient and reliable estimates. The robust joint modelling technique and its major benefits are showcased through the analysis of Northern Irish end stage renal disease patients. With an ageing population and growing prevalence of chronic kidney disease within the United Kingdom, there is a pressing demand to investigate the detrimental relationship between the changing haemoglobin levels of haemodialysis patients and their survival. As outliers within the NI renal data were found to have significantly worse survival, identification of outlying individuals through robust joint modelling may aid nephrologists to improve patient's survival. A simulation study was also undertaken to explore the difference between robust and standard joint models in the presence of increasing proportions and extremity of longitudinal outliers. More efficient and reliable estimates were obtained by robust joint models with increasing contrast between the robust and standard joint models when a greater proportion of more extreme outliers are present. Through illustration of the gains in efficiency and reliability of parameters when outliers exist, the potential of robust joint modelling is evident. The research presented in this thesis highlights the benefits and stresses the need to utilise a more robust approach to joint modelling in the presence of longitudinal outliers.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.679256  DOI: Not available
Share: