Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.678894
Title: Clean filament winding : industrial site trials and product evaluation
Author: Wait, Claire Fiona
ISNI:       0000 0004 5370 9224
Awarding Body: University of Birmingham
Current Institution: University of Birmingham
Date of Award: 2016
Availability of Full Text:
Access through EThOS:
Full text unavailable from EThOS. Thesis embargoed until 01 Sep 2020
Access through Institution:
Abstract:
During wet-filament winding, fibre bundles are impregnated using a drum-based resin bath. The impregnated bundles are then directed to a traversing-arm prior to being over-wound onto a rotating mandrel. Once the required number of layers of the impregnated fibres has been deposited on the mandrel, the assembly is transferred to an oven to cure the thermosetting resin. After this, the composite is cooled to ambient temperature and extracted from the mandrel. There are a number of issues with the conventional manufacturing method including the generation of waste resin, utilisation of significant volumes of solvent for cleaning the equipment at the end of each shift, contamination of the factory floor due to resin drips from the impregnated tows and the cost of waste disposal. This thesis reports on the integration of a modified wet-filament winding process, which is referred to as "clean fi lament winding", into an industrial filament winding manufacturing operation. It was demonstrated that the clean filament can be utilised to address the above-mentioned issues associated with the conventional wet-filament winding. For example, an 88.12% and 87.5% reduction in solvent consumption and the generation of waste resin respectively was verified when compared to conventional wet-filament winding. Hence, it can be concluded that the clean filament winding technique is capable of producing industrially relevant filament wound composites with marginally superior or equivalent properties when compared to conventional wet-filament winding. However, the environmental benefits of the clean filament winding technique are significant.
Supervisor: Not available Sponsor: Engineering and Physical Sciences Research Council (EPSRC) ; Technology Strategy Board (TSB)
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.678894  DOI: Not available
Keywords: TN Mining engineering. Metallurgy
Share: