Use this URL to cite or link to this record in EThOS:
Title: Eye tracking and gaze interface design for pervasive displays
Author: Zhang, Yanxia
ISNI:       0000 0004 5368 5242
Awarding Body: Lancaster University
Current Institution: Lancaster University
Date of Award: 2015
Availability of Full Text:
Access from EThOS:
Access from Institution:
Eye tracking for pervasive displays in everyday computing is an emerging area in research. There is an increasing number of pervasive displays in our surroundings, such as large displays in public spaces, digital boards in offices and smart televisions at home. Gaze is an attractive input modality for these displays, as people naturally look at objects of interest and use their eyes to seek information. Existing research has applied eye tracking in a variety of fields, but tends to be in constrained environments for lab applications. This thesis investigates how to enable robust gaze sensing in pervasive contexts and how eye tracking can be applied for pervasive displays that we encounter in our daily life. To answer these questions, we identify the technical and design challenges posed by using gaze for pervasive displays. Firstly, in out-of-lab environments, interactions are usually spontaneous where users and systems are unaware of each other beforehand. This poses the technical problem that gaze sensing should not need prior user training and should be robust in unconstrained environments. We develop novel vision-based systems that require only off-the-shelf RGB cameras to address this issue. Secondly, in pervasive contexts, users are usually unaware of gaze interactivity iii of pervasive displays and the technical restrictions of gaze sensing systems. However, there is little knowledge about how to enable people to use gaze interactive systems in daily life. Thus, we design novel interfaces that allow novice users to interact with contents on pervasive displays, and we study the usage of our systems through field deployments. We demonstrate that people can walk up to a gaze interactive system and start to use it immediately without human assistance. Lastly, pervasive displays could also support multiuser co-located collaborations. We explore the use of gaze for collaborative tasks. Our results show that sharing gaze information on shared displays can ease communications and improve collaboration. Although we demonstrate benefits of using gaze for pervasive displays, open challenges remain in enabling gaze interaction in everyday computing and require further investigations. Our research provides a foundation for the rapidly growing field of eye tracking for pervasive displays.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available