Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.677118
Title: The role of endoplasmic reticulum stress in vascular calcification
Author: Furmanik, Malgorzata
ISNI:       0000 0004 5368 3378
Awarding Body: King's College London
Current Institution: King's College London (University of London)
Date of Award: 2015
Availability of Full Text:
Access through EThOS:
Access through Institution:
Abstract:
Vascular calcification (VC) is a health problem common in ageing populations, diabetes and chronic kidney disease. It leads to vascular stiffening and heart failure. VC is a regulated process mediated by vascular smooth muscle cells (VSMCs), with similarities to developmental osteogenesis. The exact molecular events responsible for triggering it are unknown. The endoplasmic reticulum (ER) is involved in folding of proteins. ER stress occurs as a result of unfolded protein accumulation and has been implicated in osteoblast differentiation and bone mineralization. Therefore, I hypothesized that ER stress signalling regulates osteogenic differentiation and calcification of VSMCs. I showed that calcification of human aortas was associated with changes in ER stress marker expression. Warfarin and TNFα, which are both established inducers of vascular calcification, increased expression of ER stress markers in VSMCs. ER stress modelled in human primary VSMCs in vitro increased their calcification and was shown to modulate expression of a number of bone related genes, such as BMP-2, Runx2, Osterix, ALP, BSP and OPG in VSMCs in vitro. I also demonstrated that ER stress activated features characteristic of a secretory phenotype in VSMCs, such as downregulation of SMC markers and components of TGFβ signalling related to contractile differentiation, as well as BMP-2. Taken together these results suggested that ER stress can induce changes that lead to osteogenic differentiation. To further explore the relationship between ER stress and osteogenic differentiation of VSMCs Osterix and ALP were studied in more detail. ALP activity was upregulated by ER stress, but did not change when VSMCs calcified. Promoter analysis showed that ALP might be regulated by ER stress via indirect mechanisms and potential regulators of ALP transcription were identified using proteomic analysis.
Supervisor: Shanahan, Catherine Mary ; Kapustin, Alexander Nikolayevich Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.677118  DOI: Not available
Share: