Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.676957
Title: A multi-axial optical fibre and linear polarizer based force and torque sensor for dexterous robotic fingertips
Author: Sargeant, Ramon Bradley
ISNI:       0000 0004 5368 0302
Awarding Body: King's College London
Current Institution: King's College London (University of London)
Date of Award: 2014
Availability of Full Text:
Access through EThOS:
Access through Institution:
Abstract:
As robots play a more pervasive role in our everyday activities more and more research emphasis is being placed on having robots interact directly with humans, whether in terms of taking care of the elderly, medical interventions or performing dangerous or hazardous tasks. Another trend is for robots to use existing human tools to perform desired actions since it is also not always possible or cost effective to design special tools for every robot. This trend has led to the development of anthropomorphic dexterous manipulators that can perform equally or better than the human hand. Thus the accelerating trend is not only to design a dexterous manipulator but to focus on its ability to grasp and manipulate different and sometimes unknown objects. One of the most researched types of grasp is the precision grasp which accounts for over 80 % of the grasps performed by humans on a daily basis. Precision grasps are grasps involving the fingertips and are generally used for tasks that require fine manipulation skills. Fingertip sensors are therefore important for dexterous manipulators since humans can identify salient properties of an object and formulate effective manipulation strategies solely by grasping the object. This PhD project focuses on developing fingertip sensors, specifically force and torque fingertip sensors that can be integrated into the fingertip of an existing dexterous manipulator and gather contact force and torque information during a grasping event. Another goal is to make the sensor magnetic resonant (MR) compatible so that it can be used in high magnetic environments, as in the case of medical, magnetic resonance imagining applications. To accomplish these goals two sensors were developed based on light intensity modulation and novel sensing structures. Optical sensing schemes were chosen because they are not susceptible to magnetic interference, the sensor and its light source can be separated by long distances without significant signal attenuation and the size and weight of the actual sensing element can be reduced since the processing electronics can be positioned far from the sensing structure. The first sensor developed, as part of this PhD work, was a 2-DOF sensor which used a combination of axially-aligned fibres and linear polarizers to modulate the light to measure the applied force and torque respectively. The use of linear polarizers as the main sensing technique for force and torque sensing is a new area of research since linear polarizers have a defined response curve and can be easily cut into any desired shape and size. The experiments conducted with the 2-DOF sensor showed that the linear polarizer response was superior to traditional axially-aligned and reflective techniques and it was tolerant of small deviations and twists in the sensing structure. The second sensor improved on the first sensor by increasing the number of degrees of freedom from two to six by using a parallel-type 3-UPS (Universal Prismatic Spherical) sensing structure to allow measuring six degrees of movement. All of the joints of the sensing structure were made of nitinol flexures to reduce friction and all of the links were made of plastic and bonded together to produce a flexible but light and strong structure. Another improvement was that all of the optical modulation sensors on the sensing structure were based on linear polarizers thereby reducing the possibility of misalignment errors caused by the transmitting and receiving fibres moving out of axial alignment. The new sensor therefore satisfies the design requirements and the experiments conducted showed that Light Intensity Modulation (LIM) using linear polarizers and an appropriate sensing structure can produce an accurate and versatile force and torque sensor.
Supervisor: Althoefer, Kaspar Alexander ; Seneviratne, Lakmal Dasarath Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.676957  DOI: Not available
Share: