Use this URL to cite or link to this record in EThOS:
Title: Numerical schemes and Monte Carlo techniques for Greeks in stochastic volatility models
Author: Mihaylov, Ivo
ISNI:       0000 0004 5367 6717
Awarding Body: Imperial College London
Current Institution: Imperial College London
Date of Award: 2015
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
The main objective of this thesis is to propose approximations to option sensitivities in stochastic volatility models. The first part explores sequential Monte Carlo techniques for approximating the latent state in a Hidden Markov Model. These techniques are applied to the computation of Greeks by adapting the likelihood ratio method. Convergence of the Greek estimates is proved and tracking of option prices is performed in a stochastic volatility model. The second part defines a class of approximate Greek weights and provides high-order approximations and justification for extrapolation techniques. Under certain regularity assumptions on the value function of the problem, Greek approximations are proved for a fully implementable Monte Carlo framework, using weak Taylor discretisation schemes. The variance and bias are studied for the Delta and Gamma, when using such discrete-time approximations. The final part of the thesis introduces a modified explicit Euler scheme for stochastic differential equations with non-Lipschitz continuous drift or diffusion; a strong rate of convergence is proved. The literature on discretisation techniques for stochastic differential equations has been motivational for the development of techniques preserving the explicitness of the algorithm. Stochastic differential equations in the mathematical finance literature, including the Cox-Ingersoll-Ross, the 3/2 and the Ait-Sahalia models can be discretised, with a strong rate of convergence proved, which is a requirement for multilevel Monte Carlo techniques.
Supervisor: Chassagneux, Jean-Francois ; Jacquier, Antoine Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available