Use this URL to cite or link to this record in EThOS:
Title: Metamaterial based CMOS terahertz focal plane array
Author: Escorcia Carranza, Ivonne
ISNI:       0000 0004 5372 9938
Awarding Body: University of Glasgow
Current Institution: University of Glasgow
Date of Award: 2015
Availability of Full Text:
Access from EThOS:
Access from Institution:
The distinctive properties of terahertz radiation have driven an increase in interest to develop applications in the imaging field. The non-ionising radiation properties and transparency to common non-conductive materials have led research into developing a number of important applications including security screening, medical imaging, explosive detection and wireless communications. The proliferation of these applications into everyday life has been hindered by the lack of inexpensive, compact and room-temperature terahertz sources and detectors. These issues are addressed in this work by developing an innovative, uncooled, compact, scalable and low-cost terahertz detector able to target single frequency imaging applications such as stand-off imaging and non-invasive package inspection. The development of two types of metamaterial (MM) based terahertz focal plane arrays (FPAs) monolithically integrated in a standard complementary metal-oxide semiconductor (CMOS) technology are presented in this Thesis. The room temperature FPAs are composed of periodic cross-shaped resonant MM absorbers, microbolometer sensors in every pixel and front-end readout electronics fabricated in a 180 nm six metal layer CMOS process from Texas Instruments (TI). The MM absorbers are used due to the lack of natural selective absorbing materials of terahertz radiation. These subwavelength structures are made directly in the metallic and insulating layers available in the CMOS foundry process. When the MM structures are distributed in a periodic fashion, they behave as a frequency-selective material and are able to absorb at the required frequency. The electromagnetic (EM) properties are determined by the MM absorber geometry rather than their composition, thus being completely customisable for different frequencies. Single band and broadband absorbers were designed and implemented in the FPAs to absorb at 2.5 THz where a natural atmospheric transmission window is found, thus reducing the signal loss in the imaging system. The new approach of terahertz imaging presented in this Thesis is based in coupling a MM absorber with a suitable microbolometer sensor. The MM structure absorbs the terahertz wave while the microbolometer sensor detects the localised temperature change, depending on the magnitude of the radiation. Two widely used microbolometer sensors are investigated to compare the sensitivity of the detectors. The two materials are Vanadium Oxide (VOx) and p-n silicon diodes both of which are widely used in infrared (IR) imaging systems. The VOx microbolometers are patterned above the MM absorber and the p-n diode microbolometers are already present in the CMOS process. The design and fabrication of four prototypes of FPAs with VOx microbolometers demonstrate the scalability properties to create high resolution arrays. The first prototype consists of a 5 x 5 array with a pixel size of 30 μm x 30 μm. An 8 x 8 array, a 64 x 64 array with serial readout and a 64 x 64 array with parallel readout are also presented. Additionally, a 64 x 64 array with parallel output readout electronics with p-n diode microbolometers was fabricated. The design, simulation, characterisation and fabrication of single circuit blocks and a complete 64 x 64 readout integrated circuit is thoroughly discussed in this Thesis. The absorption characteristics of the MMs absorbers, single VOx and p-n diode pixels, 5 x 5 VOx FPA and a 64 x 64 array for both microbolometer types demonstrate the concept of CMOS integration of a monolithic MM based terahertz FPA. The imaging performance using both transmission and reflection mode is demonstrated by scanning a metallic object hidden in a manila envelope and using a single pixel of the array as a terahertz detector. This new approach to make a terahertz imager has the advantages of creating a high sensitivity room temperature technology that is capable of scaling and low-cost manufacture.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: TK Electrical engineering. Electronics Nuclear engineering