Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.676011
Title: Context-aware GPS integrity monitoring for Intelligent Transport Systems (ITS)
Author: Binjammaz, Tareq
ISNI:       0000 0004 5372 2584
Awarding Body: De Montfort University
Current Institution: De Montfort University
Date of Award: 2015
Availability of Full Text:
Access through EThOS:
Access through Institution:
Abstract:
The integrity of positioning systems has become an increasingly important requirement for location-based Intelligent Transports Systems (ITS). The navigation systems, such as Global Positioning System (GPS), used in ITS cannot provide the high quality positioning information required by most services, due to the various type of errors from GPS sensor, such as signal outage, and atmospheric effects, all of which are difficult to measure, or from the map matching process. Consequently, an error in the positioning information or map matching process may lead to inaccurate determination of a vehicle’s location. Thus, the integrity is require when measuring both vehicle’s positioning and other related information such as speed, to locate the vehicle in the correct road segment, and avoid errors. The integrity algorithm for the navigation system should include a guarantee that the systems do not produce misleading or faulty information; as this may lead to a significant error arising in the ITS services. Hence, to achieve the integrity requirement a navigation system should have a robust mechanism, to notify the user of any potential errors in the navigation information. The main aim of this research is to develop a robust and reliable mechanism to support the positioning requirement of ITS services. This can be achieved by developing a high integrity GPS monitoring algorithm with the consideration of speed, based on the concept of context-awareness which can be applied with real time ITS services to adapt changes in the integrity status of the navigation system. Context-aware architecture is designed to collect contextual information about the vehicle, including location, speed and heading, reasoning about its integrity and reactions based on the information acquired. In this research, three phases of integrity checks are developed. These are, (i) positioning integrity, (ii) speed integrity, and (iii) map matching integrity. Each phase uses different techniques to examine the consistency of the GPS information. A receiver autonomous integrity monitoring (RAIM) algorithm is used to measure the quality of the GPS positioning data. GPS Doppler information is used to check the integrity of vehicle’s speed, adding a new layer of integrity and improving the performance of the map matching process. The final phase in the integrity algorithm is intended to verify the integrity of the map matching process. In this phase, fuzzy logic is also used to measure the integrity level, which guarantees the validity and integrity of the map matching results. This algorithm is implemented successfully, examined using real field data. In addition, a true reference vehicle is used to determine the reliability and validity of the output. The results show that the new integrity algorithm has the capability to support a various types of location-based ITS services.
Supervisor: Not available Sponsor: Saudi Arabia Cultural Bureau
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.676011  DOI: Not available
Keywords: Global Positioning System (GPS) ; Intelligent Transports Systems (ITS) ; integrity
Share: