Use this URL to cite or link to this record in EThOS:
Title: Switched linear differential systems
Author: Mayo Maldonado, Jonathan
ISNI:       0000 0004 5370 7210
Awarding Body: University of Southampton
Current Institution: University of Southampton
Date of Award: 2015
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
In this thesis we study systems with switching dynamics and we propose new mathematical tools to analyse them. We show that the postulation of a global state space structure in current frameworks is restrictive and lead to potential difficulties that limit its use for the analysis of new emerging applications. In order to overcome such shortcomings, we reformulate the foundations in the study of switched systems by developing a trajectory-based approach, where we allow the use of models that are most suitable for the analysis of a each system. These models can involve sets of higher-order differential equations whose state space does not necessarily coincide. Based on this new approach, we first study closed switched systems, and we provide sufficient conditions for stability based on LMIs using the concept of multiple higher order Lyapunov function. We also study the role of positive-realness in stability of bimodal systems and we introduce the concept of positive-real completion. Furthermore, we study open switched systems by developing a dissipativity theory. We give necessary and sufficient conditions for dissipativity in terms of LMIs constructed from the coefficient matrices of the differential equations describing the modes. The relationship between dissipativity and stability is also discussed. Finally, we study the dynamics of energy distribution networks. We develop parsimonious models that deal effectively with the variant complexity of the network and the inherent switching phenomena induced by power converters. We also present the solution to instability problems caused by devices with negative impedance characteristics such as constant power loads, using tools developed in our framework.
Supervisor: Rapisarda, Paolo Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: QA75 Electronic computers. Computer science