Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.674977
Title: A conceptual electrical energy storage (EES) receiver for solar parabolic trough collector (PTC) power plants
Author: Nation, Deju Denton
Awarding Body: University of Leeds
Current Institution: University of Leeds
Date of Award: 2013
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
This work outlines the conceptualization, modelling and design of a novel electrical energy storage (EES) receiver for use in solar parabolic trough collector (PTC) power plants. A hybridization of sodium sulphur (NaS) battery and parabolic trough collector (PTC) Technologies, the EES receiver concept could one day enable PTC power plants to operate 24 hrs using solar energy only, while simultaneously providing them significant ancillary power benefits. Modelling of the EES receiver operation is achieved using of a system of ten steady state (algebraic) equations and two transient (partial differential) temperature dependent equations. The method of solving the system consisted of precedence ordering and back substituting of the steady state equations to develop a single complex and highly non-linear algebraic equation, in terms of the main process heat flux ݍ′̇ ௖௢௡ௗ,௔௧,. This equation was solved with the assistance of the Microsoft Excel goalseek tool. For the partial differential equations, a one dimensional finite difference approximation, consisting of a forward difference predictor, and a modified central difference corrector was used in discretization. Visual Basic code was then written to solve the system at each increment, each time utilizing the solution obtained for the complex non-linear algebraic equation in ݍ′̇ ௖௢௡ௗ,௔௧. This allowed investigation of the initial heat-up and charge/discharge function of the conceptual solar field. Results of simulations indicate the concept is both promising and implementable and that the slightly higher heat losses in the order of 400 – 600 W/m (a direct result of the unavoidably larger size of the conceptual receiver), are seen to be insignificant when compared to the possible energy storage and power support benefits. Though NaS batteries are currently expensive, this condition is thought to be ephemeral, since cells are made from low cost and widely available materials. Thus falling battery prices (with future mass production) could make this novel energy storage concept worthy of evaluation in a prototype PTC power plant.
Supervisor: Heggs, Peter ; Dixon-Hardy, Darren Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.674977  DOI: Not available
Share: