Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.669959
Title: Mechanistic Studies of JMJD6, Fe(II) and 2OG dependent lysyl hydroxylase
Author: Mantri, Monica
Awarding Body: University of Oxford
Current Institution: University of Oxford
Date of Award: 2012
Availability of Full Text:
Access through EThOS:
Full text unavailable from EThOS. Restricted access.
Access through Institution:
Abstract:
JMJD6 or PSR (phosphatidyl serine receptor) was initially proposed to be a membrane receptor involved in apoptotic cell clearance by recognition of apoptotic cells. However, sequence analyses implied the presence of a jelly roll or double stranded beta helix (DSBH) structural domain in PSR/JMJD6 and similarity with JmjC family of enzymes which are involved in chromatin regulation. Subsequently, PSR was renamed as JMJD6 and was reported to be a histone arginine demethylase. Previous work from our group has shown that JMJD6 is a lysine hydroxylase that interacts with nuclear proteins including CROP and U2AF65 which are involved in mRNA splicing. Peptide screening and cell based assays led to the conclusion that JMJD6 catalyses lysine hydroxylation of splicing regulatory proteins containing arginine serine rich domains (SR proteins) including U2AF65 and Luc7like-2. Studies were carried out to investigate the putative arginine demethylation activity of JMJD6 using MS analysis of histone peptides and luminescence-based assays. New substrates from SR proteins were identified by immunoprecipitation of JMJD6 expressed in human cell lines followed by LC-MS/MS analysis and MALDI-MS based assays of synthesised peptide substrates. Work then focussed on studying the mechanism of lysyl-hydroxylation from substrate and enzyme perspective. A crystal structure of seleno-methionine labelled JMJD6 was obtained and it provided insights into the JMJD6 active site and its substrate interactions. Based on this data, single point variants of JMJD6 were prepared and their substrate binding properties were studied by MALDI-MS and 2OG turnover assays. Collagen lysyl-hydroxylases are also 2OG dependent oxygenases. Efforts to investigate the stereochemistry of JMJD6 catalysed hydroxylation, employing NMR and amino acid analyses were carried out. These studies led to the interesting finding that the C-5 stereochemistry of hydroxylysine in LUC7L2 peptide is opposite (2S,5S-hydroxylysine) to that present in collagen (2S,5R-hydroxylysine). It was found that JMJD6 undergoes autocatalytic self-hydroxylation. Lysine residues from both recombinant JMJD6 and that from HeLa cells at endogenous level were identified to be hydroxylated by amino acid and LC-MS/MS analyses. JMJD6 has a strong tendency to form aggregates and gel electrophoresis always reveals multimeric bands of various JMJD6 constructs. Characterisation and identification of oligomeric states of JMJD6 was carried out using Electron Microscopy. Studies were initiated to identify possible inhibitors by screening a set of 2OG analogues. The results from this preliminary inhibition studies have identified the tricarboxylic acid (TCA) cycle intermediates, succinate and fumarate to be JMJD6 inhibitors and form a basis of further studies aimed at identifying selective inhibitors.
Supervisor: Schofield, Christopher Sponsor: Radhakrishnan Memorial Bequest
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.669959  DOI: Not available
Keywords: Protein chemistry ; Polymers Amino acid and peptide chemistry ; Organic chemistry ; Enzymes ; Chemical biology ; oxygenases ; histone modification ; mRNA splicing ; amino acid analysis ; lysine hydroxykase
Share: