Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.669774
Title: The development of corticothalamic and corticotectal connections in the murine visual system
Author: Grant, Eleanor
ISNI:       0000 0004 5369 4974
Awarding Body: University of Oxford
Current Institution: University of Oxford
Date of Award: 2014
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Restricted access.
Access from Institution:
Abstract:
All peripheral sensory information is represented in the thalamus before being transmitted to the cortex, with the exception of olfaction. The thalamus projects to all areas of the neocortex and all neocortical areas project to the thalamus. I am interested in the development of three corticothalamic populations which are anatomically and functionally distinct; they project to different thalamic nuclei and generate different post-synaptic responses. Layer V fibres project exclusively to higher order thalamic nuclei. These projections drive thalamic neuron activity and mediate a trans-thalamic cortico-cortical relay. Layer VI and VIb fibres project to both first order and higher order thalamic nuclei. These projections modulate thalamic neuron activity and mediate feedback to the thalamus. Using three transgenic mouse lines I demonstrate that developing corticothalamic fibres target the specific groups of thalamic nuclei to which they project in adulthood. Rbp4-Cre::tdTomato labels layer V; Ntsr1-Cre::tdTomato labels layer VI; Golli-τ-eGFP labels layer VI and VIb. By P4 layer V fibres arborise densely in higher order nuclei but do not innervate the first order nuclei at any age. In contrast, at this age VI and VIb fibres densely innervate the first order ventral posterior-medial nucleus (VPM), as well as higher order nuclei. Layer VI and VIb fibres accumulate outside the dorsal Lateral Geniculate Nucleus (dLGN) from P2 before entering at P6. During this waiting period, retinal fibres transmit spontaneous waves of activity to the dLGN. To assess whether retinal input regulates corticothalamic circuit development I performed monocular enucleation. I demonstrate that after loss of retinal input, layer VI and VIb fibres enter the dLGN prematurely, by P2. Furthermore layer V fibres which target the retino-recipient superior colliculus also enter prematurely following enucleation. These results suggest there may be a retinal mechanism which regulates the timing of corticofugal ingrowth to joint retinal/cortical targets. The loss of retinal driver input to the dLGN also induces layer V driver fibres to aberrantly enter the first order dLGN. These results are the first to show cross-hierarchical rewiring after losing peripheral sensory input. The role of peripheral activity in the developing nervous system is underscored by activity dependent molecular mechanisms. I therefore performed a microarray gene expression experiment to systematically analyse molecular changes in the dLGN following enucleation. The expression of numerous genes is altered following enucleation including potassium channels Kcnk9 and Kcnn3, kinase pathway mediators, Shc3 and Dgkk, and immediate early genes BDNF, Egr1 and Egr2. The majority of genes regulated by enucleation are regulated in the opposite direction over development indicating that the loss of the retinal input delays maturation of the dLGN transcriptome. In this thesis I demonstrate that early corticothalamic development targets specific thalamic nuclei. Using the visual system as a model I demonstrate that retinal input regulates corticothalamic development and contributes to the transcriptome of thalamic nuclei.
Supervisor: Molnar, Zoltan Sponsor: Medical Research Council
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.669774  DOI: Not available
Keywords: Neuroscience ; Medical sciences ; Anatomy ; Genetics (life sciences) ; Physiology and anatomy ; corticothalamic ; thalamocortical ; plasticity ; cross-hierarchical rewiring
Share: