Use this URL to cite or link to this record in EThOS:
Title: Understanding molecular dynamics with coherent vibrational spectroscopy in the time-domain
Author: Liebel, Matz
ISNI:       0000 0004 5369 4923
Awarding Body: University of Oxford
Current Institution: University of Oxford
Date of Award: 2014
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Restricted access.
Access from Institution:
This thesis describes the development of several spectroscopic methods based on impulsive vibrational spectroscopy as well as of the technique itself. The first chapter describes the ultrafast time domain Raman spectrometer including the development of two noncollinear optical parametric amplifiers for sub-10 fs pulse generation with 343 or 515 nm pumping. In the first spectroscopic study we demonstrate, for the first time, that impulsive vibrational spectroscopy can be used for recording transient Raman spectra of molecules in excited electronic states. We obtain spectra of beta-carotene with comparable, or better, quality than established frequency domain based nonlinear Raman techniques. The following two chapters address the questions on the fate of vibrational coherences when generated on a reactive potential energy surface. We photoexcite bacteriorhodopsin and observe anharmonic coupling mediated vibrational coherence transfer to initially silent vibrational modes. Additionally, we are able to correlate the vibrational coherence activation with the efficiency of the isomerisation reaction in bR. Upon generation of vibrational coherence in the second excited electronic state of beta-carotene, by excitation from the ground electronic state, we are able to follow the wavepacket motion out of the Franck-Condon region. We observe vibrationally coherent internal conversion, through a conical intersection, into the first excited electronic state and are hence able to demonstrate that electronic surface crossings can occur in a vibrationally coherent fashion. Additionally, we find strong evidence for vibronic coupling mediated back and forth crossing between the two electronic states. As a combination of this work we develop a IVS based technique that allows for the direct recording of background and baseline free Raman spectra in the time domain. Several proof of principle experiments highlight the capabilities of this technique for time resolved Raman spectroscopy. In the final chapter we present work on weak-field coherent control. Here, we address the question of whether a photochemical reaction can be controlled by the phase term of an electric excitation field, in the one photon excitation limit. We study the systems rhodamine 101, bacteriorhodopsin, rhodopsin and isorhodopsin and, contrary to previous reports, find no evidence for one photon control.
Supervisor: Kukura, Philipp Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: Laser Spectroscopy ; Photochemistry and reaction dynamics ; Physical & theoretical chemistry ; Spectroscopy and molecular structure ; Atomic and laser physics ; ultrafast spectroscopy ; time-domain Raman ; nonlinear optics ; conical intersections ; vibronic coupling