Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.669746
Title: Microstructural deformation of tendon
Author: Grant, Tyler M.
ISNI:       0000 0004 5369 4544
Awarding Body: University of Oxford
Current Institution: University of Oxford
Date of Award: 2014
Availability of Full Text:
Access through EThOS:
Full text unavailable from EThOS. Restricted access.
Access through Institution:
Abstract:
Tendon disorders are painful, disabling, and a major healthcare problem, with millions of people affected by tendon injuries each year. Current treatment strategies are inadequate and knowledge of the underlying mechanobiological mechanisms is required to develop novel therapies. Although the tissue–level properties of tendon are well–documented there remains a lack of understanding of the deformation mechanisms of this complex tissue. Therefore, the aim of this thesis is to characterize the microstructural deformation of tendon through biological imaging, mechanical testing, and computational modeling. Emphasis is placed on the structure and function of elastic fibers in tendon, whose role is poorly understood. First, histology, immunohistochemistry, and multiphoton microscopy are used to characterize the organization of elastic fibers in healthy and damaged tendon providing detailed microstructural information on their morphology and location for the first time. Elastic fibers are found to have a sparse distribution in the extracellular matrix, but are highly concentrated in the endotenon sheath and pericellular matrix. Moreover, damaged specimens are found to have a severely disrupted elastic fiber network. Elastic fibers likely contribute to fascicular deformation mechanisms and the micromechanical environment of tenocytes, which are expected to be disrupted in damaged tendon. Second, mechanical testing and enzyme treatments are used to analyze the mechanical contribution of elastic fibers to tendon. Elastase is found to significantly affect the mechanical properties of the tissue and remove the elastin component of both tendon and a control collagen–elastin biomaterial. However, elastase is also found to degrade non–elastin structural molecules that may contribute to tendon mechanics. The mechanical changes associated with the elastase treatment suggest that elastic fibers do not contribute to the elastic recoil of tendon as previously hypothesized. Third, multiphoton microscopy in combination with a novel microtensile testing machine is used to observe the deformation of collagen fibrils and tenocytes in tissue exposed to load. Tissue displacement is consistent with a helical arrangement of fibrils and nuclei experience significant elongation under physiological conditions. These results suggest that a helical arrangement of fibrils is responsible for the nonlinear stress–strain response of tendon and that nuclei are prime candidates for sensing mechanical forces in tendon. Finally, computation modeling and structural imaging are used to generate a microstructural finite element model of tendon. A helical model with embedded pericellular matrix is able to reproduce the stress–strain response and cell–level deformation of the tissue. The pericellular matrix is found to amplify mechanical forces exposed to cells, which is required to initiate mechanobiological stimulation of tenocytes under physiological conditions. Therefore, the structure and composition of the PCM during health and disease is expected to significantly affect mechanobiological mechanisms of tendon. The work presented in this thesis has used new experimental methods to provide novel insight into the structure, function, and deformation mechanisms of tendon. The techniques and concepts developed are widely applicable to the study of collagenous tissues in health and disease. In particular, observations regarding the pericellular matrix may lead to the development of new tissue–engineered and pharmacological strategies for the treatment of tendon disorders.
Supervisor: Thompson, Mark S. Sponsor: National Sciences and Engineering Research Council of Canada (NSERC) ; Imperial Order Daughters of the Empire of Canada (IODE) ; Rosetrees Trust
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.669746  DOI: Not available
Keywords: Biomedical engineering ; Tendon ; Mechanics ; Structure ; Tissue Engineering ; Elastin ; Elastic Fibers
Share: