Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.669722
Title: An integrative approach to understanding the fitness cost of rifampicin resistance in Pseudomonas aeruginosa
Author: Qi, Qin
ISNI:       0000 0004 5369 4085
Awarding Body: University of Oxford
Current Institution: University of Oxford
Date of Award: 2014
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Restricted access.
Access from Institution:
Abstract:
Antibiotic resistance in bacteria is acquired through spontaneous chromosomal mutations or horizontal gene transfer. In the absence of antibiotics, resistant mutants generally show reduced fitness due to compromised growth rate, competitive ability and virulence compared to their antibiotic-sensitive ancestors. The focus of my research is to dissect the molecular underpinnings of the variations in the fitness cost of chromosomal antibiotic resistance using a systems-level approach. From an evolutionary perspective, my research aims are to understand how the fitness cost influences adaptation in resistant populations in an antibiotic-free environment. Using rifampicin resistance in Pseudomonas aeruginosa as a model, my work shows that most of the variation in the fitness cost of rifampicin resistance can be attributed to the direct effect of rifampicin resistance mutations on transcriptional efficiency. Through RNA-Seq transcriptome profiling, I demonstrate that global changes in gene expression levels associated with resistance mutations are surprisingly subtle, suggesting that the transcriptional regulatory network of P. aeruginosa is robust against compromised transcriptional efficiency. Using experimental evolution and whole-genome sequencing, my work reveals a systematic difference in the genetic basis of adaptation in mutants that were propagated in the absence of antibiotics. During compensatory adaptation, resistant mutants can recover the fitness cost of resistance by fixing second-site mutations that directly offset the deleterious effects of resistance mutations. Amongst resistant mutant populations with low fitness costs, general adaptation limits compensatory adaptation, which is most likely to be due to the rarity of compensatory mutations and clonal interference. Far from being the most ubiquitous mechanism in the evolution of resistance, compensatory adaptation is the exception that is more likely to be observed in resistant mutants with high fitness costs. In addition, I applied key elements of the integrative experimental approach developed in this work to dissect the molecular basis of the fitness cost associated with carriage of the pNUK73 small plasmid in P. aeruginosa, which carries the rep gene encoding a plasmid replication protein. My results confirmed that rep expression generates a significant fitness cost in P. aeruginosa and demonstrate how the molecular origins of the fitness cost of resistance can be dissected in a different biological context.
Supervisor: MacLean, R. Craig ; Preston, Gail M. Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.669722  DOI: Not available
Keywords: Life Sciences ; Microbiology ; Evolution (zoology) ; Biology (medical sciences) ; fitness cost of antibiotic resistance mutations ; rifampicin resistance ; compensatory mutations ; experimental evolution ; systems biology ; transcriptome profiling ; pleiotropy
Share: