Use this URL to cite or link to this record in EThOS:
Title: Gene therapy for the ocular surface
Author: Allen , Edwin Henry Alexander
ISNI:       0000 0004 5369 3525
Awarding Body: Ulster University
Current Institution: Ulster University
Date of Award: 2014
Availability of Full Text:
Access from EThOS:
Meesmann's epithelial corneal dystrophy (MEeD), which clinically presents with microcysts that can cause irritation, blurred vision or photophobia, is a genetic disorder caused by dominant-negative mutations in the KRT3 and KRT12 genes. Eradicating the mutant protein or tipping the balance strongly in favour of the wild type allele are viable options for therapeutic intervention. Here we studied two therapeutic approaches for suppression of the mutant KRTl2 allele and have developed, characterised and initiated in vivo testing using two novel KRTl2 mouse models. For a transient therapeutic approach, short interfering RNAs (siRNAs) were designed and proved capable of mutation-specific inhibition of the alleles responsible for two MEeD causative mutations (p.Leu132Pro and p.Arg135Thr; 70-90%) in vitro. No off-target issues were observed and suppression of endogenously expressed p.Leu132Pro was also shown in an ex vivo model. For a more generic, yet potentially permanent therapeutic approach, total KRTl2 was suppressed (~50%) with an siRNA expressed from a short hairpin by targeting a region homologus to both the WT and mutant mRNAs. KRT 12 was replaced with a co-expressed recoded allele made resistant to the siRNA. To further develop these potential therapeutics, two novel mouse models were generated allowing evaluation of gene modulation in vivo. (1) A humanised dominant negative mutant model that expresses K12 p.Leu132Pro revealed major changes to corneal phenotype in homozygous animals. Microcysts were observed and keratin expression patterns disrupted. Additionally, RNAseq analysis highlighted over 1600 dysregulated genes, which could feature other potential therapeutic targets for the treatment of symptomatic MEeD. Heterozygous mice presented with a subtler phenotype. (2) A Krt12 luciferase reporter mouse model was optimised and will facilitate live animal corneal imaging, thus aiding the development of topical siRNA delivery formulations. These mouse models in conjunction with our gene silencing development programme pave the way for in vivo assessment of RNA i-based therapeutics for the cornea.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: Corneal dystrophy, Photophobia