Use this URL to cite or link to this record in EThOS:
Title: Quantitative microscopic methods for crystal growth and dissolution processes
Author: Perry, Amelia Ruth
ISNI:       0000 0004 5368 037X
Awarding Body: University of Warwick
Current Institution: University of Warwick
Date of Award: 2015
Availability of Full Text:
Access from EThOS:
Access from Institution:
The aim of this thesis was to investigate crystal nucleation, growth and dissolution processes, focussing particularly on the behaviour of the crystal surface. To facilitate this various methods of microscopy were used, as well as electrochemical techniques, with the goal to separate mass transport towards the crystal surface and the processes which occur close to the crystal surface, and measure intrinsic growth/dissolution rates. In order to do this, crystal systems were screened for their relevance to applications in industrial processes, and those chosen were related to pharmaceutical crystallization and scale formation in o↵ shore oil wells. For each system, different methods of electrochemical measurement and microscopy were investigated to chose a technique which works best for the problem in hand. Further to the experimental data produced, these were supported by mass transfer models, with the aim of finding out more quantitative information about the surface behaviour of the crystal systems observed. Firstly, salicylic acid micro-crystals were observed in aqueous solution by optical microscopy to visualise growth/dissolution rates of individual faces. It was found from finite element method (FEM) simulations that the most active (001) face was strongly mass transport controlled, and that the (110) and ( ¯ 110) were closer to the surface controlled regime. Salicylic acid crystals were further analysed by scanning electrochemical microscopy (SECM) using 3 dimensional (3D) scans containing a series of approaches to the surface. By inducing dissolution on the crystal surface, and measuring a change in ultramicroelectrode (UME) current, the dissolution rate constant of the (110) face of salicylic acid was determined for this heterogeneous surface. Barite nucleation and growth was observed by optical microscopy, using a flow cell with hydrodynamic flow. High supersaturations were used and the crystals were deposited onto foreign surfaces with differing surface charge. It was found that the flux of material, once initial nucleation was achieved, matched closely to simulated mass transport fluxes. Finally, nanoprecipitation was induced at the opening of a nanopipette (ca. 100 nm) diameter and an ion current was applied to induce the early stages of barite nucleation. It was possible to observe nucleation and blockage of the nanopipette from the current transient produced. This process was used to test the effectiveness of different phosphonate inhibitors.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: QD Chemistry