Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.668253
Title: Improving automated layout techniques for the production of schematic diagrams
Author: Chivers, Daniel
ISNI:       0000 0004 5366 1064
Awarding Body: University of Kent
Current Institution: University of Kent
Date of Award: 2014
Availability of Full Text:
Access through EThOS:
Full text unavailable from EThOS. Please try the link below.
Access through Institution:
Abstract:
This thesis explores techniques for the automated production of schematic diagrams, in particular those in the style of metro maps. Metro map style schematics are used across the world, typically to depict public transport networks, and therefore benefit from an innate level of user familiarity not found with most other data visualisation styles. Currently, this style of schematic is used infrequently due to the difficulties involved with creating an effective layout – there are no software tools to aid with the positioning of nodes and other features, resulting in schematics being produced by hand at great expense of time and effort. Automated schematic layout has been an active area of research for the past decade, and part of our work extends upon an effective current technique – multi-criteria hill climbing. We have implemented additional layout criteria and clustering techniques, as well as performance optimisations to improve the final results. Additionally, we ran a series of layouts whilst varying algorithm parameters in an attempt to identify patterns specific to map characteristics. This layout algorithm has been implemented into a custom-written piece of software running on the Android operating system. The software is targeted at tablet devices, using their touch-sensitive screens with a gesture recognition system to allow users to construct complex schematics using sequences of simple gestures. Following on from this, we present our work on a modified force-directed layout method capable of producing fast, high-quality, angular schematic layouts. Our method produces superior results to the previous octilinear force-directed layout method, and is capable of producing results comparable to many of the much slower current approaches. Using our force-directed layout method we then implemented a novel mental map preservation technique which aims to preserve node proximity relations during optimisation; we believe this approach provides a number of benefits over the the more common method of preserving absolute node positions. Finally, we performed a user study on our method to test the effect of varying levels of mental map preservation on diagram comprehension.
Supervisor: Rodgers, Peter Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.668253  DOI: Not available
Keywords: QA Mathematics (inc Computing science)
Share: