Use this URL to cite or link to this record in EThOS:
Title: Dynamic data placement and discovery in wide-area networks
Author: Ball, Nicholas
Awarding Body: Imperial College London
Current Institution: Imperial College London
Date of Award: 2013
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
The workloads of online services and applications such as social networks, sensor data platforms and web search engines have become increasingly global and dynamic, setting new challenges to providing users with low latency access to data. To achieve this, these services typically leverage a multi-site wide-area networked infrastructure. Data access latency in such an infrastructure depends on the network paths between users and data, which is determined by the data placement and discovery strategies. Current strategies are static, which offer low latencies upon deployment but worse performance under a dynamic workload. We propose dynamic data placement and discovery strategies for wide-area networked infrastructures, which adapt to the data access workload. We achieve this with data activity correlation (DAC), an application-agnostic approach for determining the correlations between data items based on access pattern similarities. By dynamically clustering data according to DAC, network traffic in clusters is kept local. We utilise DAC as a key component in reducing access latencies for two application scenarios, emphasising different aspects of the problem: The first scenario assumes the fixed placement of data at sites, and thus focusses on data discovery. This is the case for a global sensor discovery platform, which aims to provide low latency discovery of sensor metadata. We present a self-organising hierarchical infrastructure consisting of multiple DAC clusters, maintained with an online and distributed split-and-merge algorithm. This reduces the number of sites visited, and thus latency, during discovery for a variety of workloads. The second scenario focusses on data placement. This is the case for global online services that leverage a multi-data centre deployment to provide users with low latency access to data. We present a geo-dynamic partitioning middleware, which maintains DAC clusters with an online elastic partition algorithm. It supports the geo-aware placement of partitions across data centres according to the workload. This provides globally distributed users with low latency access to data for static and dynamic workloads.
Supervisor: Pietzuch, Peter Sponsor: Engineering and Physical Sciences Research Council
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available