Use this URL to cite or link to this record in EThOS:
Title: Generation and characterisation of the carbon G-centre in silicon
Author: Berhanuddin, Dilla D.
ISNI:       0000 0004 5361 5332
Awarding Body: University of Surrey
Current Institution: University of Surrey
Date of Award: 2015
Availability of Full Text:
Access from EThOS:
Access from Institution:
Silicon photonics has gained more popularity in the last decade stimulated by a series of recent breakthroughs and attractive potential applications in the integrated-optics. One of the great challenges is to modify the silicon lattice so as to enhance the light emission properties. Moreover, by referring to Moore’s Law, there are concerns of the increase in interconnect time delay which can surpass the switching time if the gate length in transistors are continued to scale down. By implementing the silicon optical emitter on the integrated circuit, it will eliminate this major problem thus enhancing the performance and speed of the computer. This work will focus on researching the point defect especially the G-centre in silicon as a potential technique to emit coherent light from silicon. We have investigated and presented a new approach to incorporate high levels of the emissive G-centre peaking sharply at 1280 nm by implanting carbon and protons into the silicon lattice. Significantly this technique utilizes fully ULSI technology compatible processes such as ion implantation and high temperature annealing. Rutherford backscattering spectrometry (RBS) and transmission electron microscopy (TEM) techniques were used along with the photoluminescence measurement to correlate the optical and structural properties of the G-centre formed by the carbon implantation and high energy ion irradiation. The analysis reveals that the silicon interstitials generated after proton irradiation are an essential factor in forming the G-centre complex. We have also introduced the dislocation engineering technique into the silicon lattice with the G-centre complexes. The results are promising and with optimization of the technique to introduce the dislocation loops into the G-centre technique, the temperature quenching problem often related to the optically active point-defect centre, may be solved. Electroluminescence (EL) measurements were carried out after the fabrication of the LED devices. Results from the sample with the G-centre luminescence is the most crucial as it shows that by using the proposed technique in this research, luminescence from silicon is indeed possible when electrically pumped. This is an essential key result for the future research of the optically active point-defect especially the G-centre towards the possibility of an electrically pumped, efficient silicon laser.
Supervisor: Homewood, Kevin P. Sponsor: Ministry of Higher Education, Malaysia ; European Research Council
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available