Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.667545
Title: Optical fibre sensors for monitoring prestressed concrete structures in nuclear power plants
Author: Perry, Marcus K. A.
Awarding Body: University of Strathclyde
Current Institution: University of Strathclyde
Date of Award: 2013
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
Lifetime extensions of nuclear fission reactors in the UK are required to satisfy growing demands for electrical power. Many of these reactors are nearing the end of their original design life, so the continued structural integrity, particularly of the reactors' prestressed concrete pressure vessels and containments is of prime concern. Currently, a lift-off inspection of a 1 % random sample of prestressing tendons is performed at 18 month to 5 year intervals to ensure adequate prestress is present in these structures, but the extended life times are making higher resolution, more frequent and in-depth monitoring techniques more desirable. In this thesis, a method of instrumenting prestressing strands with optical fibre Bragg grating strain sensors is outlined. An all-metal encapsulation and bonding technique is developed to ensure sensor reliability under the radioactive and high-stress environments of fission reactors. This 'smart strand' is complemented by a specially developed interrogation scheme capable of continuously and automatically monitoring static and dynamic nanoscale changes in Bragg grating strain. High-resolution interrogation was achieved by extending an interferrometric demodulation technique into the static measurement regime. By modulating the strain sensitivity using a fast optical switch, strain signals could be recovered independently of noise sources using various signal processing algorithms. The application of this technology could augment the continued monitoring of concrete vessel integrity, reducing both the risks and costs associated with performing lift-off measurements in the current and next generation of nuclear reactors.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Eng.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.667545  DOI: Not available
Share: