Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.667512
Title: Reduced-complexity communications system design
Author: Xu, Chao
ISNI:       0000 0004 5361 1921
Awarding Body: University of Southampton
Current Institution: University of Southampton
Date of Award: 2015
Availability of Full Text:
Access through EThOS:
Full text unavailable from EThOS. Thesis embargoed until 17 Jun 2019
Access through Institution:
Abstract:
The technical breakthrough of Turbo Codes (TCs) initiated two decades of exciting developments leading to a suite of near-capacity techniques. It has been widely recognized that exchanging extrinsic information between the channel decoders and the modulated signal detectors assists communications systems in approaching their best possible performance potential that is predicted by the channel capacity. Nonetheless, in line with Moor’s Law, as researchers inch closer and closer to the channel capacity, the complexity of the resultant communications systems is also significantly increased. In fact, soft-decision-aided signal detection conceived for Single-Input Single-Output (SISO), Single-Input Multiple-Output (SIMO) and Multiple-Input Multiple-Output (MIMO) schemes typically contribute a substantial fraction of the total complexity, especially when multiple received samples have to be jointly detected in order to combat the deleterious effect of channel fading. Against this background, in this treatise, we firstly propose a reduced-complexity design for the classic soft-decision-aided PSK/QAM detectors, and then these reduced-complexity design guidelines are applied to a variety of communications systems spanning from coherent to non coherent, from uncoded to coded, and also from SISO to MIMO systems. Our aim is to reduce the computational complexity as much as possible, especially for complex near-capacity communications systems, while mitigating any performance loss imposed by our reduced-complexity design. First of all, we commence from the family of basic coherent SISO/SIMO systems, where both uncoded and coded PSK/QAM schemes are considered. The channel coding assisted near capacity systems design principles are introduced based on EXtrinsic Information Transfer (EXIT) charts. Furthermore, we observe that the Max-Log-MAP algorithm invoked for soft-decision-aided PSK/QAM detection aims for finding the maximum probabilities, which is similar to the action of hard-decision-aided detection of uncoded MPSK/QAM schemes. Therefore, we propose to link each a priori LLR to a reduced-size fraction of the channel’s output signal constellations, so that the Max-Log-MAP algorithm may be operated at a reduced complexity. Moreover, the corresponding reduced-complexity Approx-Log-MAP algorithm is also conceived by compensating for the Max-Log-MAP algorithm’s widely-used Jacobian approximation relying on a lookup table. Our performance results demonstrate that up to 41.6% and 72.6% complexity reductions are attained for soft-decision-aided Square 64QAM and Star 64QAM detectors, respectively, which is achieved without any performance loss. This complexity reduction is substantial, especially when the soft decision-aided signal detectors are invoked several times during turbo detection. Secondly, we proceed by conceiving reduced-complexity algorithms for the non coherently detected DPSK schemes in both uncoded and coded SISO/SIMO systems. More explicitly, the DPSK transmitter modulates the data-carrying symbols onto the phase changes between consecutive transmitted symbols, so that the Conventional Differential Detection (CDD) may recover the source information by observing the phase change between every pair of consecutive received samples. However, the CDD aided DPSK suffers from a 3 dB performance penalty compared to its coherent counterpart. Moreover, an irreducible error floor occurs, when the CDD is employed in rapidly fluctuating fading channels. In order to mitigate this problem, Multiple-Symbol Differential Detection (MSDD) may be invoked in order to improve the DPSK performance by extending the observation window length from the CDD’s Nw = 2 to Nw ≥ 2. The price paid is that the MSDD complexity grows exponentially with (Nw − 1) as a result of jointly detecting the (Nw − 1) data-carrying symbols. As a remedy, the Decision-Feedback Differential Detection (DFDD) concept may be introduced in order to detect a single symbol based on previous decisions concerning the (Nw − 2) data-carrying symbols in a MSDD window. However, the DFDD inevitably imposes a performance loss due to its inherent error propagation problem. In order to retain the optimal MSDD performance, the Multiple-Symbol Differential Sphere Detection (MSDSD) facilitates the MSDD by invoking a Sphere Decoder (SD). Against this background, we firstly propose to introduce a simple correlation operation into the hard-decision-aided MSDSD employing an arbitary number of Receive Antennas (RAs), so that the SD may visit the constellation points in a zigzag fashion for the case of uncoded DPSK SIMO systems. Furthermore, we propose a reduced-complexity Schnorr-Euchner search strategy for the soft-decision MSDSD employing an arbitrary number of RAs, so that the optimum candidate may be found by visiting a reduced-size subset of constellation points, and then the rest of the constellation points may be visited in a zig-zag fashion. Our simulation results demonstrate that up to 88.7% complexity reduction is attained for MSDSD (Nw = 4) aided D16PSK. We have also proposed the near-optimum Approx-Log-MAP algorithm conceived for soft-decision-aided SD, which has not been disseminated in the open literature at the time of writing. Furthermore, the important subject of coherent versus non coherent detection is discussed in the context of coded systems, which suggests that MSDSD aided DPSK is an eminently suitable candidate for turbo detection assisted coded systems operating at high Doppler frequencies. Following this, a range of non coherent detectors designed for non-constant modulus Differential QAM (DQAM) schemes are introduced for both uncoded and coded scenarios, where the open problem of MSDSD aided Differential QAM (DQAM) is solved. More explicitly, the MSDSD relies on the knowledge of channel correlation, which is determined both by the Doppler frequency and by the noise power. For DPSK, the transmitter’s phases may form a unitary matrix, which may be separated from the channel’s correlation matrix, so that a lower triangular matrix that is created by decomposion from the inverse of the channel’s correlation matrix may be utilized in the context of sphere decoding. However, for DQAM, the transmitted symbol-amplitudes cannot form a unitary matrix, which implies that they have to be taken into account by the channel’s correlation matrix. As a result, the symbol-amplitude-dependent channel correlation matrix only becomes known, when all the symbol-amplitudes are detected. Furthermore, the classic DFDD solutions conceived for DQAMrely on the assumption of the channel’s correlation matrix being independent of the symbol-amplitudes, which implies that these DFDD solutions are sub-optimal and they are not equivalent to the decision-feedback aided version of the optimum MSDD. To circumvent these problems, we prove that although the complete channel correlation matrix remains unknown, the associated partial channel correlation matrix may be evaluated with the aid of the SD’s previous decisions as well as by relying on a single information-dependent symbol amplitude that may be readily found by the SD. As a benefit, we are able to invoke sphere decoding for both amplitude detection and phase detection in the context of MSDD aided DQAM. Furthermore, we have also improved the classic DFDD solutions conceived for DQAMby directly deriving them from the optimum MSDD. Moreover, we offer a unified treatment of diverse non coherent detectors, including CDD,MSDD,MSDSD and DFDD for a variety of DQAM constellations that exist in the literature, including Differential Amplitude Phase Shift Keying (DAPSK), Absolute-Amplitude Differential Phase Shift Keying (ADPSK) and their twisted constellations. The reduced-complexity algorithms proposed for DPSK detection are also applied to DQAM detection in both uncoded and coded systems.
Supervisor: Hanzo, Lajos Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.667512  DOI: Not available
Keywords: QA75 Electronic computers. Computer science
Share: