Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.667299
Title: Anammox in a temperate estuary
Author: Pritchard, William James
ISNI:       0000 0004 5359 8552
Awarding Body: Queen Mary, University of London
Current Institution: Queen Mary, University of London
Date of Award: 2014
Availability of Full Text:
Access through EThOS:
Access through Institution:
Abstract:
The seasonal variation of anammox is yet to be comprehensively studied, unlike denitrification, the more traditional sink for fixed nitrogen. A seasonal study of anammox, denitrification and benthic oxygen consumption using the revised isotope pairing technique is presented in Chapter 2. Experimental temperature and NO3- concentration were kept constant throughout so that the capacity of the sediment for anammox could be estimated. Similar seasonal variations in the rates of anammox, denitrification and oxygen consumption suggest that anammox is controlled by the availability of organic carbon. Furthermore the effect of tidal inundation by overlying water rich in NO3- was investigated by measuring rates of anammox, denitrification and oxygen consumption at three tidal elevations throughout the year. A significant relationship between anammox and denitrification was established at each tidal elevation, which increased in strength as length of inundation decreased. To complement this seasonal study, additional experiments were undertaken, which are described in Chapter 3, to determine how anammox, denitrification and sediment metabolism responds to variations in experimental NO3- concentration and temperature. There were significant increases in rates of anammox, denitrification and sediment metabolism with temperature until 20oC when rates of anammox began to reduce. Furthermore there was significant variation in the response of all three processes to temperature in samples collected at different dates, which suggested that reduced bioavailability of organic carbon in the winter months was limiting the response to temperature. In addition to exploring how inorganic N is cycled in estuarine sediments, the ability of estuarine sediments to oxidize urea via nitrite was examined using 15N and 13C labelled substrates. Results, which are presented in Chapter 4, indicate that urea added to anaerobic sediment slurries was rapidly hydrolysed to ammonium before being oxidized via the anammox pathway.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.667299  DOI: Not available
Keywords: Biological and Chemical Sciences ; Anammox ; aquatic ecosystems
Share: