Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.667238
Title: Bayesian networks for evidence based clinical decision support
Author: Yet, Barbaros
Awarding Body: Queen Mary, University of London
Current Institution: Queen Mary, University of London
Date of Award: 2013
Availability of Full Text:
Access through EThOS:
Access through Institution:
Abstract:
Evidence based medicine (EBM) is defined as the use of best available evidence for decision making, and it has been the predominant paradigm in clinical decision making for the last 20 years. EBM requires evidence from multiple sources to be combined, as published results may not be directly applicable to individual patients. For example, randomised controlled trials (RCT) often exclude patients with comorbidities, so a clinician has to combine the results of the RCT with evidence about comorbidities using his clinical knowledge of how disease, treatment and comorbidities interact with each other. Bayesian networks (BN) are well suited for assisting clinicians making evidence-based decisions as they can combine knowledge, data and other sources of evidence. The graphical structure of BN is suitable for representing knowledge about the mechanisms linking diseases, treatments and comorbidities and the strength of relations in this structure can be learned from data and published results. However, there is still a lack of techniques that systematically use knowledge, data and published results together to build BNs. This thesis advances techniques for using knowledge, data and published results to develop and refine BNs for assisting clinical decision-making. In particular, the thesis presents four novel contributions. First, it proposes a method of combining knowledge and data to build BNs that reason in a way that is consistent with knowledge and data by allowing the BN model to include variables that cannot be measured directly. Second, it proposes techniques to build BNs that provide decision support by combining the evidence from meta-analysis of published studies with clinical knowledge and data. Third, it presents an evidence framework that supplements clinical BNs by representing the description and source of medical evidence supporting each element of a BN. Fourth, it proposes a knowledge engineering method for abstracting a BN structure by showing how each abstraction operation changes knowledge encoded in the structure. These novel techniques are illustrated by a clinical case-study in trauma-care. The aim of the case-study is to provide decision support in treatment of mangled extremities by using clinical expertise, data and published evidence about the subject. The case study is done in collaboration with the trauma unit of the Royal London Hospital.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.667238  DOI: Not available
Keywords: Computer Science ; Evidence based medicine ; Medical statistics ; Bayesian networks ; Clinical decision-making
Share: