Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.667218
Title: Toughening of epoxy carbon fibre composites using dissolvable phenoxy fibres
Author: Wong, Doris Wai-Yin
Awarding Body: Queen Mary, University of London
Current Institution: Queen Mary, University of London
Date of Award: 2013
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
The aim of this study is to investigate a novel toughening approach for liquid mouldable carbon fibre/epoxy composites. The toughening mechanism is based on the use of thermoplastics for the toughening of epoxy resins in which polymer blends are formed, leading to phase separated morphologies which allows for various toughening mechanisms to take place. Instead of standard melt or solution blending, the thermoplastic in this study is introduced as solid phenoxy fibres, which are combined with dry carbon fabric preforms. These phenoxy fibres remain solid during resin infusion and dissolve when the laminates are heated and phase separation takes place before curing completed. The main benefits of this approach are that the viscosity of matrix resin remains low, which makes liquid moulding of these laminates possible. Localised and selective toughening of particular regions within a structure can also be achieved. Process time and cost can also be reduced by eliminating the polymer blending process. It was found that modification with phenoxy improved composite Mode-I interlaminar toughness significantly, with an increase of up to 10-folds for bifunctional epoxy composite and 100% for tetrafunctional epoxy composite, while tensile properties were not adversely affected. It was found that it is possible to combine the dissolvable phenoxy fibres with an undissolved aramid interleaf to improve toughness and damage properties. However, the phenoxy-epoxy systems had lowered environmental stability and degraded after hot-wet and solvent conditioning.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.667218  DOI: Not available
Keywords: Materials Science ; Carbon fibre/epoxy composites
Share: