Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.667157
Title: Autophagy in epidermis
Author: Akinduro, Olufolake A. E.
Awarding Body: Queen Mary, University of London
Current Institution: Queen Mary, University of London
Date of Award: 2013
Availability of Full Text:
Access through EThOS:
Access through Institution:
Abstract:
Organ‐transplant recipients (OTRs) on a new class of immunosuppressants, rapamycin and its analogues, have reduced cutaneous Squamous Cell Carcinomas (cSCCs). Rapamycin, an mTORC1 inhibitor, is also a known autophagy inducer in experimental models. Autophagy, which literally means self‐eating, is a cell survival mechanism but can also lead to cell death. Therefore, the main hypothesis behind this work is that rapamycin prevents epidermal tumourigenesis by either affecting epidermal mTOR regulation of autophagy and/or selectively affecting epidermal AKT isoform activity. Epidermal keratinocytes move from the proliferating basal layer upwards to the granular layers where they terminally differentiate, forming a layer of flattened, anucleate cells or squames of the cornified layer which provides an essential environmental barrier. However, epidermal terminal differentiation, a specialised form of cell death involving organelle degradation, is poorly understood. The work presented in this thesis shows that analysis of the autophagy marker expression profile during foetal epidermal development, indicates autophagy is constitutively active in the terminally differentiating granular layer of epidermis. Therefore, I hypothesize that autophagy is a mechanism of organelle degradation during terminal differentiation of granular layer keratinocytes. In monolayer keratinocytes, activation of terminal differentiation is accompanied by autophagic degradation of nuclear material, nucleophagy. This suggests that constitutive autophagy is a pro‐death mechanism required for terminal differentiation. In cultured keratinocytes and in epidermal cultures, rapamycinmediated mTORC1 inhibition strongly increases AKT1 activity as well as up‐regulates constitutive granular layer autophagy promoting terminal differentiation. Therefore, autophagy is an important fundamental process in keratinocytes which may be the mechanism by which terminally differentiating keratinocytes of the epidermal granular layer degrade their organelles required for barrier formation. This may have implications for the treatment of patients with barrier defects like psoriasis. In immunosuppressed OTRs, rapamycin may promote epidermal autophagy and AKT1 activity adding to its anti‐tumourigenic properties.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.667157  DOI: Not available
Keywords: Medicine ; Skin cancer ; Cutaneous squamous cell carcinomas ; Rapamycin ; Immunosuppressants
Share: