Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.667136
Title: Indoor and outdoor location estimation in large areas using received signal strength
Author: Li, Kejiong
Awarding Body: Queen Mary, University of London
Current Institution: Queen Mary, University of London
Date of Award: 2013
Availability of Full Text:
Access through EThOS:
Access through Institution:
Abstract:
Location estimation when deployed on wireless networks supports a range of services including user tracking and monitoring, health care support and push and pull marketing. The main subject of this thesis is improving indoor and outdoor location estimation accuracy using received signal strength (RSS) from neighbouring base stations (BSs) or access points (APs), without using the global positioning system (GPS) or triangulation methods. For the outdoor environment, state-of-the-art deterministic and probabilistic algorithms are adapted to exploit principal components (PCs) and clustering. The accuracy is compared with K-nearest neighbour (KNN) algorithms using different partitioning models. The proposed scheme clusters the RSS tuples based on deviations from an estimated RSS attenuation model and then transforms the raw RSS in each cluster into new uncorrelated dimensions, using PCs. As well as simple global dimensionality reduction using PCs, the data reduction and rotation within each cluster improves estimation accuracy because a) each cluster can model the different local RSS distributions and b) it efficiently preserves the RSS correlations that are observed (some of which are substantial) in local regions and which independence approximations ignore. Different simulated and real environments are used for the comparisons. Experimental results show that positioning accuracy is significantly improved and fewer training samples are needed compared with traditional methods. Furthermore, a technique to adjust RSS data so that radio maps collected in different environmental conditions can be used together to enhance accuracy is also demonstrated. Additionally, in the radio coverage domain, a non-parametric probability approach is used for the radio reliability estimation and a semi-supervised learning model is proposed for the monitoring model training and evolution according to real-time mobile users’ RSS feedback. For the indoor environment, an approach for a large multi-story indoor location estimaiii tion using clustering and rank order matching is described. The accuracies using WiFi RSS alone, cellular GSM RSS alone and integrated WiFi and GSM RSS are presented. The methods were tested on real indoor environments. A hierarchical clustering method is used to partition the RSS space, where a cluster is defined as a set of mobile users who share exactly the same strongest RSS ranking set of transmitters. The experimental results show that while integrating of WiFi RSS with GSM RSS creates a marginal improvement, the GSM data can be used to ameliorate the loss of accuracy when APs fail.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.667136  DOI: Not available
Keywords: Electronic Engineering ; Wireless networks ; Signals ; RSS
Share: