Title:

Braided Hopf algebras, double constructions, and applications

This thesis contains four related papers which study different aspects of double constructions for braided Hopf algebras. The main result is a categorical action of a braided version of the Drinfeld center on a Heisenberg analogue, called the Hopf center. Moreover, an application of this action to the representation theory of rational Cherednik algebras is considered. Chapter 1 : In this chapter, the Drinfeld center of a monoidal category is generalized to a class of mixed Drinfeld centers. This gives a unified picture for the Drinfeld center and a natural Heisenberg analogue. Further, there is an action of the former on the latter. This picture is translated to a description in terms of YetterDrinfeld and Hopf modules over quasibialgebras in a braided monoidal category. Via braided reconstruction theory, intrinsic definitions of braided Drinfeld and Heisenberg doubles are obtained, together with a generalization of the result of Lu (1994) that the Heisenberg double is a 2cocycle twist of the Drinfeld double for general braided Hopf algebras. Chapter 2 : In this chapter, we present an approach to the definition of multiparameter quantum groups by studying Hopf algebras with triangular decomposition. Classifying all of these Hopf algebras which are of what we call weakly separable type, we obtain a class of pointed Hopf algebras which can be viewed as natural generalizations of multiparameter deformations of universal enveloping algebras of Lie algebras. These Hopf algebras are instances of a new version of braided Drinfeld doubles, which we call asymmetric braided Drinfeld doubles. This is a generalization of an earlier result by Benkart and Witherspoon (2004) who showed that twoparameter quantum groups are Drinfeld doubles. It is possible to recover a Lie algebra from these doubles in the case where the group is free and the parameters are generic. The Lie algebras arising are generated by Lie subalgebras isomorphic to sl2. Chapter 3 : The universal enveloping algebra U(tr_{n}) of a Lie algebra associated to the classical YangBaxter equation was introduced in 2006 by BartholdiEnriquezEtingofRains where it was shown to be Koszul. This algebra appears as the A_{n1} case in a general class of braided Hopf algebras in work of BazlovBerenstein (2009) for any complex reection group. In this chapter, we show that the algebras corresponding to the series B_{n} and D_{n}, which are again universal enveloping algebras, are Koszul. This is done by constructing a PBWbasis for the quadratic dual. We further show how results of BazlovBerenstein can be used to produce pairs of adjoint functors between categories of rational Cherednik algebra representations of different rank and type for the classical series of Coxeter groups. Chapter 4 : Quantum groups can be understood as braided Drinfeld doubles over the group algebra of a lattice. The main objects of this chapter are certain braided Drinfeld doubles over the Drinfeld double of an irreducible complex reflection group. We argue that these algebras are analogues of the DrinfeldJimbo quantum enveloping algebras in a setting relevant for rational Cherednik algebra. This analogy manifests itself in terms of categorical actions, related to the general DrinfeldHeisenberg double picture developed in Chapter 2, using embeddings of Bazlov and Berenstein (2009). In particular, this work provides a class of quasitriangular Hopf algebras associated to any complex reflection group which are in some cases finitedimensional.
