Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.667012
Title: Mathematical models of the retina in health and disease
Author: Roberts, Paul Allen
Awarding Body: University of Oxford
Current Institution: University of Oxford
Date of Award: 2015
Availability of Full Text:
Access through EThOS:
Full text unavailable from EThOS. Restricted access.
Access through Institution:
Abstract:
The retina is the ocular tissue responsible for the detection of light. Its extensive demand for oxygen, coupled with a concomitant elevated supply, renders this tissue prone to both hypoxia and hyperoxia. In this thesis, we construct mathematical models of the retina, formulated as systems of reaction-diffusion equations, investigating its oxygen-related dynamics in healthy and diseased states. In the healthy state, we model the oxygen distribution across the human retina, examining the efficacy of the protein neuroglobin in the prevention of hypoxia. It has been suggested that neuroglobin could prevent hypoxia, either by transporting oxygen from regions where it is rich to those where it is poor, or by storing oxygen during periods of diminished supply or increased uptake. Numerical solutions demonstrate that neuroglobin may be effective in preventing or alleviating hypoxia via oxygen transport, but that its capacity for oxygen storage is essentially negligible, whilst asymptotic analysis reveals that, contrary to the prevailing assumption, neuroglobin's oxygen affinity is near optimal for oxygen transport. A further asymptotic analysis justifies the common approximation of a piecewise constant oxygen uptake across the retina, placing existing models upon a stronger theoretical foundation. In the diseased state, we explore the effect of hyperoxia upon the progression of the inherited retinal diseases, known collectively as retinitis pigmentosa. Both numerical solutions and asymptotic analyses show that this mechanism may replicate many of the patterns of retinal degeneration seen in vivo, but that others are inaccessible to it, demonstrating both the strengths and weaknesses of the oxygen toxicity hypothesis. It is shown that the wave speed of hyperoxic degeneration is negatively correlated with the local photoreceptor density, high density regions acting as a barrier to the spread of photoreceptor loss. The effects of capillary degeneration and treatment with antioxidants or trophic factors are also investigated, demonstrating that each has the potential to delay, halt or partially reverse photoreceptor loss. In addition to answering questions that are not accessible to experimental investigation, these models generate a number of experimentally testable predictions, forming the first loop in what has the potential to be a fruitful experimental/modelling cycle.
Supervisor: Byrne, Helen M.; Gaffney, Eamonn A. Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.667012  DOI: Not available
Keywords: Biology ; Biology and other natural sciences (mathematics) ; Mathematics ; Mathematical biology ; Ordinary differential equations ; Partial differential equations ; Biology (medical sciences) ; Ophthamology ; Pathology ; Physiology ; Reaction-diffusion Equations ; Asymptotic Analysis ; Eye ; Retina ; Photoreceptors ; Neuroglobin ; Retinitis Pigmentosa ; Hypoxia ; Hyperoxia
Share: