Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.667003
Title: Molecular dynamics simulation studies of transmembrane signalling proteins
Author: Abd Halim, Khairul Bariyyah
ISNI:       0000 0004 5359 0024
Awarding Body: University of Oxford
Current Institution: University of Oxford
Date of Award: 2014
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Restricted access.
Access from Institution:
Abstract:
Receptor tyrosine kinases (RTKs) are a major class of cell surface receptors, important in cell signalling events associated with a variety of functions. High-throughput (HTP), coarse-grained molecular dynamics (CG-MD) simulations have been used to investigate the dimerization of the transmembrane (TM) domain of selected RTKs, including epidermal growth factor receptor (EGFR) and muscle-specific kinase (MuSK). EGFR activation requires not only a specific TM dimer interface, but also a proper orientation of its juxtamembrane (JM) domain. Phosphatidylinositol 4,5-bisphosphate (PIP2) is known to abolish EGFR phosphorylation through interaction with basic residues within the JM domain. Here, a multiscale approach was used to investigate anionic lipid clustering around the TM-JM junction and how such clustering is modulated by the mutation of basic residues. The simulations demonstrated that PIP2 may help stabilize the JM-A antiparallel dimer, which may in turn help stabilize TM domain helix packing of the N-terminal dimerization motif. A proximal TM domain residue has been implicated in the inhibition of ganglioside GM3 in phase-separated membranes. Here, CG simulations were used to explore the dynamic behaviour of the EGFR TM domain dimer in GM3-containing and GM3-depleted bilayers designed to resemble lipid-disordered (Ld) and phase-separated (Ld/Lo) membranes. The simulations suggest that the presence of GM3 in Ld/Lo bilayers can disrupt and destabilize the TM dimer, which helps to explain why GM3 may favour monomeric EGFR in vivo. To gain insights into the dynamic nature of the intact EGFR, a nearly complete EGFR dimer was modelled using available structural data and embedded in an asymmetric compositional complex bilayer, which resembles the mammalian plasma membrane. The results demonstrated the dynamic nature of the EGFR ectodomain and its predicted interactions with lipids in the local bilayer. Strong protein-lipid interactions, as well as lipid-lipid interactions, affect the local clustering of lipids and the diffusion of lipids in the vicinity of the protein on both leaflets.
Supervisor: Sansom, Mark S. P. Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.667003  DOI: Not available
Keywords: Computational biochemistry ; Molecular dynamics ; transmembrane ; lipid ; RTKs ; juxtamembrane ; multiscale
Share: