Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.666433
Title: Adaptive constraint solving for information flow analysis
Author: Dash, Santanu Kumar
ISNI:       0000 0004 5354 2428
Awarding Body: University of Hertfordshire
Current Institution: University of Hertfordshire
Date of Award: 2015
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
In program analysis, unknown properties for terms are typically represented symbolically as variables. Bound constraints on these variables can then specify multiple optimisation goals for computer programs and nd application in areas such as type theory, security, alias analysis and resource reasoning. Resolution of bound constraints is a problem steeped in graph theory; interdependencies between the variables is represented as a constraint graph. Additionally, constants are introduced into the system as concrete bounds over these variables and constants themselves are ordered over a lattice which is, once again, represented as a graph. Despite graph algorithms being central to bound constraint solving, most approaches to program optimisation that use bound constraint solving have treated their graph theoretic foundations as a black box. Little has been done to investigate the computational costs or design e cient graph algorithms for constraint resolution. Emerging examples of these lattices and bound constraint graphs, particularly from the domain of language-based security, are showing that these graphs and lattices are structurally diverse and could be arbitrarily large. Therefore, there is a pressing need to investigate the graph theoretic foundations of bound constraint solving. In this thesis, we investigate the computational costs of bound constraint solving from a graph theoretic perspective for Information Flow Analysis (IFA); IFA is a sub- eld of language-based security which veri es whether con dentiality and integrity of classified information is preserved as it is manipulated by a program. We present a novel framework based on graph decomposition for solving the (atomic) bound constraint problem for IFA. Our approach enables us to abstract away from connections between individual vertices to those between sets of vertices in both the constraint graph and an accompanying security lattice which defines ordering over constants. Thereby, we are able to achieve significant speedups compared to state-of-the-art graph algorithms applied to bound constraint solving. More importantly, our algorithms are highly adaptive in nature and seamlessly adapt to the structure of the constraint graph and the lattice. The computational costs of our approach is a function of the latent scope of decomposition in the constraint graph and the lattice; therefore, we enjoy the fastest runtime for every point in the structure-spectrum of these graphs and lattices. While the techniques in this dissertation are developed with IFA in mind, they can be extended to other application of the bound constraints problem, such as type inference and program analysis frameworks which use annotated type systems, where constants are ordered over a lattice.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.666433  DOI: Not available
Keywords: information flow analysis ; type theory ; computational complexity ; graph theory ; lattice-based security ; graph decomposition ; least upper bond ; label polymorphism
Share: