Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.666364
Title: Determining the effects of peatland restoration on carbon dioxide exchange and potential for climate change mitigation
Author: Gatis, Naomi Le Feuvre
ISNI:       0000 0004 5353 7848
Awarding Body: University of Exeter
Current Institution: University of Exeter
Date of Award: 2015
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
Over the last millennium peatlands have accumulated significant carbon stores. Drainage for agricultural use has been widespread and has altered the functioning of these mires: shifting them towards carbon release. Recently, in recognition of the range of ecosystem services derived from these landscapes peatland restoration projects have been initiated. Carbon storage is often cited amongst the aims of these projects, especially since the inclusion of rewetting wetlands in the Kyoto Protocol. However, little is known about the effects of ditch blocking on CO2 fluxes, particularly in Molinia caerulea dominated peatlands, a species common on degraded peatlands which tolerates a range of water table depths. This thesis aims firstly to quantify CO2 fluxes from a drained Molinia caerulea dominated blanket bog and to improve understanding of the temporal and spatial controls on these fluxes and secondly, to quantify the immediate effects of ditch blocking. Closed chamber measurements of net ecosystem exchange and partitioned below-ground respiration from control-restored paired sites were collected over the growing seasons immediately pre- (2012) and post-restoration (2013/2014). These flux data were coupled with remotely sensed data quantifying vegetation phenology and structure with a fine resolution (daily/cm) over large extents (annual/catchment). Although temporal variation in water table depth was not related to CO2 fluxes, the seasonal average related to vegetation composition suggesting raising water tables may promote a change in vegetation composition within these species-poor ecosystems. The distribution of water table depths, vegetation composition and CO2 fluxes did not vary with proximity to drainage ditches despite their prominence. An empirical model suggests in a drained state these peatlands are CO2 sources, indicating carbon previously accumulated is gradually being lost. Data suggest restoration does not always significantly affect water tables and consequently CO2 fluxes in the short-term. Where shallower water tables were maintained during dry conditions photosynthesis decreased and heterotrophic respiration increased: enhancing carbon release. Research undertaken during atypical weather has been unable to determine if restoration will be able to raise water tables sufficiently to protect the existing peat store and promote the vegetation change required to reinstate CO2 sequestration in the longer-term.
Supervisor: Anderson, Karen; Hartley, Iain; Brazier, Richard; Smith, David Sponsor: University of Exeter ; South West Water
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.666364  DOI: Not available
Keywords: net ecosystem exchange ; Molinia caerulea ; ditch blocking ; vegetation phenology ; vegetation structure ; drained peat
Share: