Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.666340
Title: Ecological responses to climate variability in west Cornwall
Author: Kosanic, Aleksandra
ISNI:       0000 0004 5353 6757
Awarding Body: University of Exeter
Current Institution: University of Exeter
Date of Award: 2014
Availability of Full Text:
Access through EThOS:
Access through Institution:
Abstract:
Recent (post-1950s) climate change impacts on society and ecosystems have been recognised globally. However these global impacts are not uniform at regional or local scales. Despite research progress on such scales there are still gaps in the knowledge as to 'what' is happening and 'where'? The goal of this study addresses some of these gaps by analysing climate variability and vegetation response at the furthest south westerly peninsula of the United Kingdom. This research is focused on West Cornwall (South West England) - an area dominated by a strong maritime influence. The first part of this PhD research analysed archive and contemporary instrumental data in order to detect any trends in climate variability. The weather data was retrieved from the Met Office archive for Camborne 1957-2010 and Culdrose 1985-2011 stations; Trengwainton Garden (1940-2010), and from the Royal Cornwall Polytechnic Society, for Falmouth (1880-1952) and Helston (1843-1888). The data showed positive trends in mean annual and maximum temperature with the largest trend magnitude in the 20th and 21st century. Seasonal temperature change varies locally with the highest increase in autumn spring and summer. Precipitation trends were only positive for the 19th century for Helston. Correlation between precipitation data and North Atlantic Oscillation (NAO index) was negative, however the opposite result was detected when the NAO index was correlated with temperatures. Surprisingly, return period analysis showed a decrease in the frequency and intensity of extreme precipitation events post 1975 for Camborne and Trengwainton Garden stations. The second part of this study analysed changes in vegetation distribution in West Cornwall using historical and contemporary vegetation records. Historical vegetation records were used from the Flora of Cornwall collection of herbarium records and contemporary vegetation records which were available online, containing mainly the 'New Atlas of British and Irish flora'. Data sets were geo-referenced using ArcGIS in order to analyse changes in species geographical distribution pre and post-1900. Analysis showed that historical vegetation records can be used to assess any changes in geographic distributions of vegetation. Analysis for the area of West Cornwall showed a loss of range for 18 species, for 6 species this loss was larger than 50% of the area, and there was no change in overall range area for 10 species. Ellenberg values and environmental indicator values showed that they can be used as an indicator of environmental change, showing a decrease in species with lower January temperatures. Analysis also showed an increase in moderate wetter species, where species with extreme low and high precipitation environmental indicator values showed a greater loss. Furthermore species with a higher requirement for light showed a loss as well as species with lower nitrogen values. To analyse the loss of species at the local scale, West Cornwall was divided into three areas (North Border Cells, Central West Cornwall Cells and South Border Cells). The highest loss of 11 species was detected for South Border Cells, where the loss for Central West Cornwall Cells was 6 and for North Border Cells 8 species. It was found that 17 species were experiencing loss on different local sites. For 9 of these 17 species, change at the local scale was different to the national scale change at the individual species level, group level and habitat level. Furthermore, the whole area of West Cornwall lost two species post-1900, with a different loss locally. This showed that species could be protected locally in appropriate microclimate refugia, which will be of benefit for the preservation of regional identity ecosystem services and overall genetic pool of the species.
Supervisor: Harrison, Stephan Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.666340  DOI: Not available
Keywords: Climate change ; Vegetation response ; Ellenberg values
Share: