Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.666041
Title: Dijet invariant mass studies in the Higgs boson H→bb- resonance search in association with a W/Z boson using the ATLAS detector
Author: Proissl, Manuel Daniel
ISNI:       0000 0004 5353 0435
Awarding Body: University of Edinburgh
Current Institution: University of Edinburgh
Date of Award: 2015
Availability of Full Text:
Access through EThOS:
Full text unavailable from EThOS. Please try the link below.
Access through Institution:
Abstract:
The Standard Model of Particle Physics describes the fundamental building blocks of matter and phenomena up to the highest particle interaction energies. The theory demands the existence of a scalar particle: the Higgs boson. The Higgs boson was discovered by the ATLAS and CMS collaborations at CERN using bosonic final states and is measured to have a mass of around 125 GeV. This particle is predicted to decay predominantly into pairs of b-quarks at this mass, but suffers from overwhelming backgrounds from the multijet production expected from QCD interactions. Therefore, H→bb- production in association with a leptonically decaying W or Z boson is considered, with Z → vv-, W → lv and Z → ll, where ` denotes electrons and muons. This thesis presents a search for the Higgs boson decaying into bb- pairs in association with a W or Z boson using the ATLAS detector at the Large Hadron Collider (LHC) at CERN. The analysis uses the full dataset recorded during pp collisions at the LHC in Run-1, corresponding to 4.7 fb-1 at √s = 7 TeV and 20.3 fb-1 at √s = 8 TeV. A multivariate technique and a kinematic cut-based approach have been used to maximize the signal over background ratio, where a particular emphasis on the latter approach is made in this thesis. Final state radiation and reconstruction effects may decrease the bb- resonance resolution significantly, while comparably decreasing the probability of observing the decay over the background. The b quark pairs from the Higgs boson are reconstructed as topological clusters formed to jets in the ATLAS calorimeter. Thus, the reconstruction and calibration of these jets are crucial for the final Higgs mass resolution and paramount for the search and for future precision measurements of V H, H→bb- production. This thesis presents the development and evaluation of advanced techniques to improve the invariant dijet mass reconstruction of the H→bb- candidate. Sequential jet calibrations, semileptonic corrections and pT corrections to account for the interplay between jet resolution/scale and the underlying signal pT spectrum obtained from Monte Carlo simulations have been studied. A major focus has been made on the development and evaluation of an event-level kinematic likelihood fitting framework to exploit the full kinematic potential of V H topologies within the detector uncertainties of the reconstructed final state signatures in order to improve the measurement of the b-tagged jet kinematics. The jet energy calibrations of the H→bb- signal candidates yield an overall improvement of the dijet invariant mass resolution of up to ~30%, and of the expected statistical significance of ~12%. The analysis procedure is validated using the resonant V Z(bb-) production in the same final states as for the Higgs boson search, and is observed, compatible with the Standard Model expectation, with a significance of 4.9 standard deviations and a signal strength of μ^V Z = 0:74+0:17 -0:16. For a Higgs boson mass of 125.36 GeV, the observed (expected) deviation from the background-only hypothesis is found with a significance of 1.4 (2.6) standard deviations and a signal strength is determined to be μ^V H = 0:52±0:32(stat.)±0:24(syst.).
Supervisor: Martin, Victoria; Clark, Philip Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.666041  DOI: Not available
Keywords: particle physics ; Higgs boson ; Jet reconstruction ; ATLAS ; CERN
Share: