Title:

Attack graph approach to dynamic network vulnerability analysis and countermeasures

It is widely accepted that modern computer networks (often presented as a heterogeneous collection of functioning organisations, applications, software, and hardware) contain vulnerabilities. This research proposes a new methodology to compute a dynamic severity cost for each state. Here a state refers to the behaviour of a system during an attack; an example of a state is where an attacker could influence the information on an application to alter the credentials. This is performed by utilising a modified variant of the Common Vulnerability Scoring System (CVSS), referred to as a Dynamic Vulnerability Scoring System (DVSS). This calculates scores of intrinsic, timebased, and ecological metrics by combining related subscores and modelling the problem’s parameters into a mathematical framework to develop a unique severity cost. The individual static nature of CVSS affects the scoring value, so the author has adapted a novel model to produce a DVSS metric that is more precise and efficient. In this approach, different parameters are used to compute the final scores determined from a number of parameters including network architecture, device setting, and the impact of vulnerability interactions. An attack graph (AG) is a security model representing the chains of vulnerability exploits in a network. A number of researchers have acknowledged the attack graph visual complexity and a lack of indepth understanding. Current attack graph tools are constrained to only limited attributes or even rely on handgenerated input. The automatic formation of vulnerability information has been troublesome and vulnerability descriptions are frequently created by hand, or based on limited data. The network architectures and configurations along with the interactions between the individual vulnerabilities are considered in the method of computing the Cost using the DVSS and a dynamic costcentric framework. A new methodology was built up to present an attack graph with a dynamic cost metric based on DVSS and also a novel methodology to estimate and represent the costcentric approach for each host’ states was followed out. A framework is carried out on a test network, using the Nessus scanner to detect known vulnerabilities, implement these results and to build and represent the dynamic cost centric attack graph using ranking algorithms (in a standardised fashion to Mehta et al. 2006 and Kijsanayothin, 2010). However, instead of using vulnerabilities for each host, a CostRank Markov Model has developed utilising a novel costcentric approach, thereby reducing the complexity in the attack graph and reducing the problem of visibility. An analogous parallel algorithm is developed to implement CostRank. The reason for developing a parallel CostRank Algorithm is to expedite the states ranking calculations for the increasing number of hosts and/or vulnerabilities. In the same way, the author intends to secure large scale networks that require fast and reliable computing to calculate the ranking of enormous graphs with thousands of vertices (states) and millions of arcs (representing an action to move from one state to another). In this proposed approach, the focus on a parallel CostRank computational architecture to appraise the enhancement in CostRank calculations and scalability of of the algorithm. In particular, a partitioning of input data, graph files and ranking vectors with a load balancing technique can enhance the performance and scalability of CostRank computations in parallel. A practical model of analogous CostRank parallel calculation is undertaken, resulting in a substantial decrease in calculations communication levels and in iteration time. The results are presented in an analytical approach in terms of scalability, efficiency, memory usage, speed up and input/output rates. Finally, a countermeasures model is developed to protect against network attacks by using a Dynamic Countermeasures Attack Tree (DCAT). The following scheme is used to build DCAT tree (i) using scalable parallel CostRank Algorithm to determine the critical asset, that system administrators need to protect; (ii) Track the Nessus scanner to determine the vulnerabilities associated with the asset using the dynamic cost centric framework and DVSS; (iii) Check out all published mitigations for all vulnerabilities. (iv) Assess how well the security solution mitigates those risks; (v) Assess DCAT algorithm in terms of effective security cost, probability and cost/benefit analysis to reduce the total impact of a specific vulnerability.
