Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.664789
Title: Digital ion trap mass spectrometry for cold ion-molecule chemistry
Author: Pollum, Laura L.
ISNI:       0000 0004 5365 864X
Awarding Body: University of Oxford
Current Institution: University of Oxford
Date of Award: 2015
Availability of Full Text:
Access through EThOS:
Full text unavailable from EThOS. Restricted access.
Access through Institution:
Abstract:
A promising new approach for studying cold ion-molecule chemical reactions is the combination of laser- or sympathetically-cooled trapped ions and slow-moving molecules from a cold molecule source, such as a quadrupole velocity selector or a Stark decelerator. Previous reaction studies using trapped atomic ions and slow molecules from a quadrupole velocity selector were able to reach average collision energies as low as 1 K. However, the guided molecules had an approximately room temperature rotational energy distribution, so the reactions studied were not truly cold. Thus, a new molecular source for producing translationally and rotationally cold molecules utilizing buffer gas cooling and quadrupole velocity selection was constructed by K. Twyman and characterized for use in cold reaction studies. This new source of cold molecules is referred to as the buffer gas guide. A new ion trap has been designed and built for use with the existing buffer gas guide. The new ion trap apparatus is compact and mechanically compatible with this new guide. It uses a linear Paul ion trap with cylindrical electrodes to trap ions. Two optical axes (one axial and one radial) enable efficient cooling of small ion crystals. A field-free time-of-flight tube and ion detection assembly are also incorporated into the apparatus. A new technique for determining the mass and quantity of trapped ions has also been developed, termed digital ion trap mass spectrometry. The new technique uses a digital RF waveform to trap ions before ejecting the ions radially from the trap using an ejection pulse applied to the trap electrodes. The ions are then detected after free flight along a time-of-flight tube. This technique was characterized by ejecting crystals of various sizes and compositions: Ca+ only, Ca+/CaF +, Ca+/CaOH +/CaOD+, and Ca+/NH +3 /NH +4 /H3O+. A linear relationship between the number of ions ejected (determined by comparing experimental and simulated crystal images) and the integral of the time-of-flight peak was observed for Ca+ and Ca+/CaF +. All mass peaks were resolved. Simulations of the trapped ions and their trajectories through the time-of-flight tube were also performed, and excellent agreement between the simulated and experimental mass resolution was observed. Progress towards combining the buffer gas guide with the previously independent ion trap is also presented. It is anticipated that the combined buffer gas guide ion trap apparatus will enable the study of ion-molecule reactions at low temperatures with translationally and rotationally cold molecules. It is anticipated that the new digital ion trap mass spectrometry technique will simplify the study of reactions when multiple product ions whose masses are separated by only 1 AMU are formed. A new ion trap has been designed and built for use with the existing buffer gas guide. The new ion trap apparatus is compact and mechanically compatible with this new guide. It uses a linear Paul ion trap with cylindrical electrodes to trap ions. Two optical axes (one axial and one radial) enable efficient cooling of small ion crystals. A field-free time-of-flight tube and ion detection assembly are also incorporated into the apparatus. A new technique for determining the mass and quantity of trapped ions has also been developed, termed digital ion trap mass spectrometry. The new technique uses a digital RF waveform to trap ions before ejecting the ions radially from the trap using an ejection pulse applied to the trap electrodes. The ions are then detected after free flight along a time-of-flight tube. This technique was characterized by ejecting crystals of various sizes and compositions: Ca+ only, Ca+/CaF+, Ca+/CaOH+/CaOD+, and Ca+/NH+3/NH+4/H3O+. A linear relationship between the number of ions ejected (determined by comparing experimental and simulated crystal images) and the integral of the time-of-flight peak was observed for Ca+ and Ca+/CaF+. All mass peaks were resolved. Simulations of the trapped ions and their trajectories through the time-of-flight tube were also performed, and excellent agreement between the simulated and experimental mass resolution was observed. Progress towards combining the buffer gas guide with the previously independent ion trap is also presented. It is anticipated that the combined buffer gas guide ion trap apparatus will enable the study of ion-molecule reactions at low temperatures with translationally and rotationally cold molecules. It is anticipated that the new digital ion trap mass spectrometry technique will simplify the study of reactions when multiple product ions whose masses are separated by only 1 AMU are formed.
Supervisor: Softley, Tim P. Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.664789  DOI: Not available
Keywords: Physical & theoretical chemistry ; Ion trap ; Mass spectrometry ; physical chemistry ; time of flight
Share: