Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.664768
Title: Physics of microorganism behaviour : motility, synchronisation, run-and-tumble, phototaxis
Author: Bennett, Rachel R.
ISNI:       0000 0004 5365 5625
Awarding Body: University of Oxford
Current Institution: University of Oxford
Date of Award: 2015
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Restricted access.
Access from Institution:
Abstract:
Microorganisms have evolved in a low Reynolds number environment and have adapted their behaviour to its viscosity. Here, we consider some features of behaviour observed in microorganisms and use hydrodynamic models to show that these behaviours emerge from physical interactions, including hydrodynamic friction, hydrodynamic interactions and mechanical constraints. Swimming behaviour is affected by surfaces and observations of Vibrio cholerae show that it swims near a surface with two distinct motility modes. We develop a model which shows that friction between pili and the surface gives the two motility modes. The model is extended to study the behaviour of bacteria which are partially attached to a surface. Observations of Shewanella constrained by a surface show several different behaviours. The model shows that different degrees of surface constraint lead to different types of behaviour; the flexibility of the flagellar hook and the torque exerted by the flagellar motor also cause different behaviours. Near surface behaviour is important for understanding the initial stages of biofilm formation. Chlamydomonas swims using synchronous beating of its two flagella. A simple model of Chlamydomonas is developed to study motility and synchronisation. This model shows that the stability of synchronisation is sensitive to the beat pattern. Run-and-tumble behaviour emerges when we include intrinsic noise, without the need for biochemical signalling. The model is also used to show how observed responses of the flagella to light stimuli produce phototaxis. Finally we study hydrodynamic synchronisation of many cilia and consider the stability of metachronal waves in arrays of hydrodynamically coupled cilia. This thesis shows that physical interactions are responsible for many behavioural features and that physical models provide a useful technique for exploring open questions in biology.
Supervisor: Golestanian, Ramin Sponsor: Engineering and Physical Sciences Research Council
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.664768  DOI: Not available
Keywords: Theoretical physics ; Biophysics ; Condensed matter theory ; Hydrodynamics ; microorganism motility ; synchronisation
Share: